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Abstract 

 

The ability to prioritize among contents in working memory (WM) is critical for 

successful control of thought and behavior. Recent work has demonstrated that 

prioritization in WM can be implemented by representing different states of priority in 

different representational formats. Here, we explored the mechanisms underlying WM 

prioritization by simulating the double serial retrocuing (DSR) task with recurrent 

neural networks (RNNs). Visualization of stimulus representational dynamics using 

principal component analysis (PCA) revealed that the network represented trial context 

(order of presentation) and priority via different mechanisms. Ordinal context, a stable 

property lasting the duration of the trial, was accomplished by segregating 

representations into orthogonal subspaces. Priority, which changed multiple times 

during a trial, was accomplished by separating representations into different manifolds 

within each subspace. We assessed the generality of these mechanism by applying 

dimensionality reduction and multiclass decoding to fMRI and EEG datasets and found 

that priority and context are represented differently along the dorsal visual stream, and 

that behavioral performance is sensitive to trial-by-trial efficacy of priority coding, but 

not context coding.  
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One of the hallmarks of working memory (WM) is its ability to flexibly prioritize 

among its contents in the service of the current behavioral goal. For example, say that 

you’ve just completed a talk at a conference, and you see two people simultaneously 

approaching each of two microphones to ask a question. You turn to the moderator and 

wait for them to indicate who will ask the first question, and based on this your shift of 

gaze is guided by your memory of the location of the cued microphone. To study 

prioritization in WM, one line of work has made extensive use of the double serial 

retrocuing (DSR) task, in which two sample items are initially presented and 

“remembered”, followed by a blank “no-action” delay, then a retrocue indicating which 

of the two memorized items will be tested by an impending memory probe (see Figure 

1A for an example). This item is said to take on the status of prioritized memory item 

(PMI). Because the item that was not cued may be tested later in the trial, however, it 

cannot be dropped from memory (i.e., “forgotten”), so it takes on the status of 

unprioritized memory item (UMI) until the PMI is tested. Subsequently, a second 

retrocue indicates, unpredictably, which item will be tested by a second memory probe; 

thus, either item can take on the status of PMI during the second half of the trial. An 

initial set of studies applying multivariate pattern analysis (MVPA) decoding to fMRI 

and EEG data from subjects performing the DSR task failed to find evidence for an active 

representation of the UMI, giving rise to the idea that it might be held in an “activity-

silent” state (Larocque et al., 2014; LaRocque et al., 2017; Lewis-Peacock et al., 2011; 

Rose et al., 2016). More recently, however, studies using variants of the DSR task (with 

fMRI; van Loon et al., 2018; Yu, Teng & Postle, 2020) and the 2-back WM task (with EEG; 

Wan et al., 2020) have provided evidence for an active trace of the UMI that undergoes a 

transformation relative to the representational format of the PMI. Specifically, the UMI 

can produce significantly below-baseline MVPA decoding (van Loon et al., 2018) and 

“opposite” reconstruction with multivariate inverted encoding modeling (IEM; Wan et 

al., 2020; Yu, Teng & Postle, 2020).  

As an initial step toward better understanding the priority-based representational 

transformations observed in neuroimaging data (van Loon et al., 2018; Wan et al., 2020; 

Yu, Teng & Postle, 2020), we had trained recurrent neural networks (RNN) with a long 

short-term memory (LSTM) architecture to perform the 2-back WM task (Wan et al., 

2022). Visualization of LSTM hidden layer activity using principal component analysis 

(PCA) had confirmed that stimulus representations in RNNs also undergo 

representational transformations when transitioning between priority states. 

Specifically, demixed (d)PCA of these data had identified two representational 

trajectories, one within a UMI-specific subspace and the other a PMI-specific subspace, 

both undergoing a reversal of stimulus coding axes. Having thus observed similar 

priority-based transformational dynamics in the human brain and in RNNs, we 
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speculated that this type of transformation might be a computationally rational way to 

meet the competing demands of retaining information in WM while simultaneously 

preventing it from interfering with concurrent behavior (Wan et al., 2022).  

Whereas in Wan et al. (2022) we simulated the 2-back task, the results presented 

here were prompted by results of RNN simulation of the DSR. This was important to do 

because although the n-back task has been important for the study of many aspects of 

WM, it is poorly suited for the study of the flexible control of behavior with WM. This is 

because the n-back is a continuous performance task in which each item follows the 

same functional trajectory. For the 2-back, for example, each item n first serves as a 

memory probe against which to compare one’s memory for item n - 2, then transitions 

to UMI (while n + 1 is compared with the memory of n – 1), then transitions to PMI (for 

its comparison with item n + 2), then becomes no-longer-relevant and can be dropped 

from WM. The DSR, in contrast, does require online, flexible control, because the 

identity of the two retrocues can’t be predicted prior to their onset. Unexpectedly, 

however, it is a different property of the DSR task that motivated the work presented 

here.  

At the beginning of each trial of DSR, sample items can either be presented 

simultaneously or serially. When items are presented simultaneously, they necessarily 

each appear at a different location, and it is an item’s unique location that is used by the 

retrocue to designate it the PMI. Thus, the location at which an item appears serves as 

critical trial-specific context. When items are presented serially, they can appear at the 

same or different locations, and when they appear at the same location (as they did in 

Yu, Teng & Postle, 2020) the retrocue must designate the prioritized item by referring 

to the order in which it was presented (i.e., “first” or “second;” the item’s ordinal 

context). When we simulated the DSR from Yu, Teng and Postle (2020), the unexpected 

finding was that the representation of the first sample item underwent a dramatic 

transformation upon the onset of the second item (i.e., prior to the designation of 

priority, which would be indicated by the retrocue). Specifically, whereas it had been 

represented in a subspace defined by the first two principal components of a PCA 

applied to the hidden layer or the RNN, it was displaced from this subspace by the 

representation of the second item, and shunted to a new subspace defined by the third 

and fourth principal components of the PCA. This finding caused us to reconsider our 

interpretation of the transformational dynamics observed in the 2-back task (Wan et al., 

2022), because an item’s functional trajectory during that task confounds priority with 

context. That is, while an item has the status of UMI it also has the contextual status of 

item-that-was-presented-most-recently (i.e., “1-back”), and when it then transitions to 

the status of PMI its context simultaneously transitions to item-that-was-presented-2-

back. The aims of this report, therefore, are two-fold. One is to explore, at the 
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computational level, how context-based representational transformations may differ 

from priority-based transformations. This will be carried out via RNN simulations. The 

second is to assess how these two properties, context and priority, might differ in the 

way they influence behavior, and in the way they are represented in the brain.  

  

Methods 

The data presented here derive from three sources: RNN simulations of a double 

serial retrocuing (DSR) task; reanalysis of data from an EEG study of DSR; and 

reanalysis of an fMRI study of DSR.  

 

Participants 

EEG 

The EEG data set is from 12 healthy young adults (5 females, average age = 21.7 ± 

3.2 years, all right-handed), as described in detail in Fulvio and Postle (2020). This N 

was double that of a previous EEG study for which MVPA decoding results yielded 

informative prioritization effects (Rose et al., 2016), and so was deemed satisfactory for 

the analyses to be carried out here.  

 

fMRI 

The fMRI data set is from 13 healthy young subjects (10 females, average age = 21.1 

± 4.5 years, all right-handed), as described in detail by Yu, Teng, and Postle (2020). 

Because IEM analyses of these fMRI data had yielded informative prioritization effects, 

this N was deemed satisfactory for the analyses to be carried out here. 

 

Behavioral tasks  

Recurrent Neural Network (RNN) models 

The training task was modeled after the fMRI task (Yu, Teng & Postle, 2020; Figure 

1B). Stimuli were randomly drawn from a pool of oriented gratings that covered the 

continuous range from [0°, 180°) interval (Sample 1: 𝜑 and Sample 2: 𝜃). Stimulus 

location was not simulated, and it was possible for 𝜑 and 𝜃 to take on the same 

orientation. Each trial began with the presentation of Sample 1 (50 timesteps) followed 

by an interstimulus interval (ISI, i.e., blank delay; 50 timesteps) followed by Sample 2 

(50 timesteps) followed by Delay 1.1 (50 timesteps) followed by Cue 1/Response 1 (50 

timesteps; the response window was the duration of Cue 1). Next came another ISI (50 

timesteps) followed by Cue 2/Response 2 (50 timesteps). Cue 2 matched (“stay”) or did 

not match (“switch”) Cue 1, unpredictably, and equal number of times. 

 

fMRI: DSR with ordinal and location context, and recall probes 
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Stimuli were drawn from a pool of 9 oriented gratings that evenly covered the 

range from 0 to 179, and could be presented at one of 9 locations that, each at a 

distance of 8˚ of visual angle from central fixation, evenly covered the range of possible 

locations from 0 to 359 of polar angle. Each trial began with the presentation Sample 1 

(.75 sec) followed by an ISI (.5 sec), followed by Sample 2 (.75 sec), followed by Delay 

1.1 (8 sec), followed by a centrally presented digit (“1” or “2,” Cue 1; .75 sec). After the 

ensuing Delay 1.2 (8 sec), a recall dial appeared at the location that had been occupied 

by the PMI, and the subject had 4 sec to rotate it to match their memory of that item’s 

orientation. Subsequently, after a brief unfilled interval (.5 sec), a second centrally 

presented digit (“1” or “2,” Cue 1; .75 sec) indicated the item to be tested, after Delay 2 

(2 sec), at Recall 2 (4 sec). Cue 2 matched (“stay”) or did not match (“switch”) Cue 1, 

unpredictably, an equal number of times (Figure 1A).  

Because the location of the recall dial indicated the item to be recalled, a possible 

strategy would be to ignore the cues and simply behave based on the location of the 

recall dial. However, this strategy was discouraged due to an important detail of the 

procedure. On each trial, the orientation and the location of each stimulus were selected 

at random (with replacement), and independently. Thus, on each trial there was a p 

= .11 chance that the second sample would have the same orientation as the first and, 

independently, a p = .11 chance that the second sample would appear at the same 

location as had the first. These contingencies encouraged subjects to not wait for the 

onset of the recall dial to recall the orientation of the PMI and, indeed, patterns of 

priority-related transformation of the UMI during Delay 1.2, as assessed by IEM, 

confirmed that subjects used the ordinal cue to guide their behavior (Yu, Teng, and 

Postle, 2020).  

 

EEG: DSR with location context and recognition probes  

Each trial began with the simultaneous presentation of two sample items, one 

drawn from each of two out of three possible categories (faces, direction of dot motion, 

and words), one appearing above and one below central fixation (2 sec; Figure 1C). The 

samples were replaced by a central fixation symbol (“+”) during an initial delay (Delay 

1.1; 5 sec), followed by a dashed line appearing at one of the two sample locations (.5 

sec), indicating that that item would be the first to be tested (Cue 1). After a second 

delay (Delay 1.2; 4.5 sec), during which the cued item had the status of prioritized 

memory item (PMI) and the uncued item the status of unprioritized memory item 

(UMI), an image serving as a recognition probe appeared centrally, and was either 

identical to the PMI (“match,” p = .5), drawn from the same category but a different 

exemplar than the PMI (“nonmatch,” p = .3), or identical to the UMI (also “nonmatch”, p 

= .2; Probe 1; 1 sec). Probe 1 was replaced by the fixation symbol (Response 1; 1 sec), and 
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a response was required during the 2 sec spanning Probe 1 and Response 1. Next a 

dashed line appeared at one of the two sample locations (Cue 2; .5 sec), thereby 

designating the PMI for the following Delay 2 (4.5 sec), then Probe 2 (1 sec) then 

Response 2 (1 sec). ITI varied from 2-4 sec.  

Data were collected during three sessions, each on a separate day, with each session 

comprising eight 30-trial blocks, alternating between blocks of DSR and a single 

retrocue task (results from single retrocue task not presented here). During each block 

Cue 1 appeared unpredictably at the “up” or “down” location an equal number of times 

and, orthogonal to Cue 1 location, Cue 2 appeared, unpredictably, at the same (“Stay,” 

Figure 1C, top row) or opposite (“Switch,” Figure 1C, bottom row) location as had Cue 1 

an equal number of times. Balanced across cue conditions, spTMS was delivered 2-3 sec 

after the offset of Cue 1 on 50% of trials and, orthogonally, after the offset of Cue 2 on 

50% of trials. Note that the EEG data used for the “transformation efficacy analyses” 

(see the “Analysis procedures” section below) include both epochs with and without 

spTMS. 
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Figure 1. Experimental procedure for (A) The fMRI task, (B) the RNN task and (C) the EEG task. 

Figures adapted, with permission, from Yu, Teng and Postle (2020; panel A), Fulvio and Postle 

(2020; panel C). 

 

Experimental procedures 

RNN 

 Stimulus orientations were fed into the network via 32 orientation-tuned input 

units whose preferred orientations spanned the full 180° range, and whose response 

properties were based on V1 orientation-selective neurons (Teich & Qian, 2003; Figure 

2). A 33rd input unit was used for retrocue, inputting “0” on each non-cue timestep and a 

“1” or “-1” (indicating “1st” or “2nd,” respectively) during each cue timestep. The two 

output units were trained to produce cos(2𝑥) and sin(2𝑥) (where 𝑥 was either 𝜃 or 𝜑  

depending on the cue) so that the 0° orientation had the same output as the 180° 

orientation (Figure 2).  

 Our network had 100 fully-connected recurrent units and the dynamics 𝑢𝑖(𝑡) of 

each recurrent unit were governed by the following standard continuous-time RNN 

equations: 

𝜏
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −𝑥𝑖(𝑡) + ∑ 𝑊𝑖𝑗

𝑟𝑒𝑐

𝑁𝑟𝑒𝑐

𝑗=1

𝑢𝑗(𝑡) + ∑ 𝑊𝑖𝑘
𝑖𝑛𝐼𝑘(𝑡) +

𝑁𝑖𝑛

𝑘=1

𝑏𝑖 

𝑢𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡)) + 𝜉𝑖(𝑡) 

 

for 𝑖 = 1, …, 𝑁𝑟𝑒𝑐 . We introduced nonlinearity using the rectified linear unit (ReLU) 

function 𝑓(𝑥) = max(0, 𝑥). Each recurrent unit received input from other units via 

recurrent connections with weights specified by the matrix 𝑊𝑟𝑒𝑐, initialized 

orthogonally (Saxe et al., 2013). In addition, these units received external input 𝐼(𝑡) to 

the RNN via weights specified by the matrix 𝑊𝑖𝑛. Each unit carried two sources of bias: 

(1) 𝑏𝑖, learned during training, and (2) 𝜉𝑖(𝑡), which represented intrinsic noise in the 

network and took the form of white Gaussian (sampled independently at each timestep) 

with zero mean. We simulated the approximate network dynamics using the Euler 

method for 𝑇 = 350 timesteps, each having a duration 𝜏/10 (Mante et al., 2013). We 

chose 𝑑𝑡/𝜏 = 0.1 similar to (Cueva et al., 2021); e.g., 𝑑𝑡 = 10 ms and 𝜏 = 100 ms, which 

would make the time scale of our simulations close to that of the fMRI experiment. The 

outputs 𝑦𝑗(𝑡) were then generated by combining the activities of the recurrent units 

based on:  

𝑦𝑗(𝑡) = 𝑔 ( ∑ 𝑊𝑗𝑖
𝑜𝑢𝑡

𝑁𝑟𝑒𝑐

𝑖=1

𝑢𝑖(𝑡)) 
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where 𝑔 is the tanh activation function. 

 We optimized the network parameters 𝑊𝑖𝑛, 𝑊𝑟𝑒𝑐, 𝑏 and 𝑊𝑜𝑢𝑡 to minimize the 

mean squared error between the target outputs and the network outputs: 

𝐸 =
1

𝑀𝑇𝑁𝑜𝑢𝑡
∑ (𝑦𝑗(𝑡, 𝑚) − 𝑦𝑗

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡, 𝑚))2

𝑀,𝑇,𝑁𝑜𝑢𝑡

𝑚,𝑡,𝑗=1

. 

Parameters were updated with the Adam stochastic gradient descent (SGD) 

algorithm (Kingma & Ba, 2014) and each network was trained for 10,000 epochs. 

 

 

 

Figure 2. RNN input and architecture. Top left illustrates input of a stimulus with an angular 

value corresponding to the peak magnitude of this 32-dimensional vector; bottom left illustrates 

that at each timestep the value of the input to the cue input unit was 0, 1, or -1. 

 

fMRI 

For each subject regions of interest (ROIs) were defined, both anatomically and 

functionally, for eight regions: early visual cortex (EVC, V1 and V2 merged), IPS0-

through-IPS5 (6 ROIs), and FEF (all ROIs cover both hemispheres). First, anatomical 

ROIs were defined by extracting masks from the probabilistic atlas of Wang and 

colleagues (2015) and warping them to each subject’s structural scan in native space. To 

identify task-related activity, we modeled each epoch of the task with 6 boxcar 

regressors in a general linear model (GLM) – Sample (2 sec), Delay 1.1 (8 sec), Delay 1.2 

(8 sec), Recall 1 (4 sec), Delay 2 (2 sec), and Recall 2 (4 sec) convolved with a canonical 

hemodynamic response function and we also included covariates to control for motion. 

We proceeded to create anatomically constrained functional ROI for bilateral EVC by 

selecting the 500 voxels inside the V1-2 anatomical ROI with the strongest loading on 

the Sample regressor and for bilateral IPS0-5 and FEF by separately selecting the 500 
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voxels inside each of IPS0-5 and FEF anatomical ROIs, with highest loading on the Delay 

1.2 regressor.   

 

EEG data collection 

The experimental procedure from the experiment reported by Fulvio and Postle 

(2020) entailed recording the EEG with concurrent delivery of single pulses of 

transcranial magnetic stimulation (spTMS) on half of the delay periods of the DSR task. 

However, because the original report only included behavioral results (with and 

without spTMS), here we detail the EEG methods.  

EEG was recorded with a 60-channel cap and TMS-compatible amplifier, equipped 

with a sample-and-hold circuit that held amplifier output constant from 100 μs before 

stimulation to 2 ms after stimulation (NexStim eXimia, Helsinki, Finland). Electrode 

impedance was kept below 5 kΩ. The reference electrode was placed superior to the 

supraorbital ridge. Eye movements were recorded with two additional electrodes, one 

placed near the outer canthus of the right eye, and one underneath the right eye. The 

EEG was recorded between 0.1 and 350 Hz at a sampling rate of 1450 Hz with 16-bit 

resolution.  

Data were processed offline using EEGLAB (Delorme & Makeig, 2004) with the 

TMS-EEG signal analyzer (TESA) open-source EEGLAB extension (Mutanen et al., 2020; 

Rogasch et al., 2017) and Fieldtrip (Oostenveld et al., 2010) toolboxes in MATLAB. The 

pipeline followed the TMS-EEG analysis pipeline (http://nigelrogasch.github.io/TESA/). 

Then, electrodes exhibiting excessive noise were removed and the data were epoched to 

-12 s to 8 s around the first spTMS event tag (Delay 1.2) and -4.5 s to 4.5 s around the 

second spTMS event tag (Delay 2). The data were downsampled to 500 Hz. In order to 

minimize the TMS artifact in the EEG signal, the data were interpolated using a cubic 

function from -2 to 30 ms around the TMS pulse, and this interpolation was also carried 

out on delay periods on which TMS was not delivered. (For delay periods for which no 

spTMS was delivered (“spTMS-absent”), a dummy spTMS event tag was added at a 

latency that matched the most recent spTMS-present delay period.) The data were 

bandpass filtered between 1 and 100 Hz with a notch filter centered at 60 Hz. 

Independent component analysis (ICA) was used to identify and remove components 

reflecting residual muscle activity, eye movements, blink-related activity, residual 

electrode artifacts, and residual TMS-related artifacts. A spherical spline interpolation 

was applied to electrodes exhibiting excessive noise. Finally, the data were re-

referenced to the average of all electrodes that were included in the ICA. 

The present analyses included EEG data from all delay periods (i.e., averaging data 

from spTMS-present and spTMS-absent trials and ignoring this factor).  
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Analysis procedures 

PCA visualization of the RNN hidden layer activity 

We extracted from each network the activity of the 100 recurrent units from all 

1000 testing trials and used PCA to project these 100-dimensional activity patterns onto 

the four dimensions accounting for the most variance across all training trials 

separately for each timestep. We then visualized the representations of each Sample 1 

and Sample 2 by plotting the dimensionality-reduced activity across the 350-timestep 

time course of a trial, and coloring the activity patterns according to stimulus identity, 

separately, in three 2D plots (PC1-2, PC2-3 and PC3-4).  

In addition, we plotted the effective dimensionality (ED) of the data at each 

timepoint, which is the equivalent number of orthogonal dimensions that would 

produce the same overall pattern of covariation (Del Giudice, 2021). It is calculated 

using the following formula: 

𝐸𝐷 =
(∑ 𝜆𝑖)𝑁

𝑖=1
2

∑ 𝜆𝑖
2𝑁

𝑖=1

 

where 𝜆𝑖s are the eigenvalues of the covariance matrix of the N recurrent units’ 

activities at a certain time point.  

 

Transformational efficacy analyses on EEG and fMRI data 

 The PCA visualizations of RNN activity revealed representational dynamics, such 

that stimulus information was represented differently as a function of context (1st or 

2nd) and as a function of cue identity (essentially priority (PMI or UMI/IMI) for each 

stimulus). To assess the functional relevance of these two coding schemes for human 

behavior, we assessed trial-by-trial variation in the efficacy of context-based and 

priority-based transformations, and determined for each whether this variability 

related to trial-by-trial variation in behavior.   

For the representation of context, we first calculated a template stimulus 

representational format for each subject by averaging the neural activity for each 

context status (“1st” or “2nd” for fMRI; “up” or “down” for EEG) over a time window 

corresponding to Delay 1.1, across all trials. (For the remainder of this section, for 

simplicity, we will only refer to ordinal context.) To these two windowed averages we 

applied demixed principal component analysis (dPCA; refer to Wan et al. 2022 for 

methodological details) to derive the first two demixed principal components (PCs), 

thereby constructing a Sample 1 template subspace and a Sample 2 template subspace. 

We then projected individual trial activity from the same time window into the template 

subspaces and calculated the “transformational efficacy index” (TEI) for that trial’s 

representational transformation into the Sample 1 subspace and its representational 
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transformation into the Sample 2 subspace. TEI was defined as the Euclidean distance 

between that trial’s representation in the subspace and the template representation, 

normalized by the distance between the two template representations in that subspace. 

(E.g., for trial n, the TEI for the Sample 1 subspace would be the Euclidean distance 

between the trial representation projected into the Sample 1 subspace and the Sample 1 

template (projected into the Sample 1 subspace), divided by the distance between the 

Sample 2 template projected into the Sample 1 subspace and the Sample 1 template 

(projected into the Sample 1 subspace). A lower average TEI for a context-based 

transformation (e.g., the Sample 1 transformation) corresponded to lower variability, 

for that subject, of that transformation, which we interpreted as higher 

“transformational efficacy.” For the fMRI data, we used TR 5-7 to define the Delay 1.1 

subspaces, and for the for the EEG data we used the entirety of Delay 1.1. 

For priority-based transformations, we followed the same procedures, but used TR 

9-11 to define the Delay 1.2 subspaces and the entirety of Delay 1.2 period for the EEG 

data, and labeled the data according to priority status (i.e., PMI and UMI). 

 If the efficacy of a context-based transformation is important for behavior, smaller 

TEIs should be associated with superior performance. To assess this in the fMRI data, 

for each subject we sorted responses, separately for Recall 1 and for Recall 2, by median 

split of angular error, then calculated, for each response, the average TEI for each type 

of transformation (e.g., “what was the average TEI for the transformation to Sample 1 

for low-error vs. high error responses to Recall 1?”). Then we performed paired-

samples t-tests between group-average high-error and low-error TEIs, separately for 

each subspace, each brain region, and each response (Recall 1 and Recall 2). The 

analysis procedure was similar for the EEG data except that the comparison was 

between incorrect and correct responses. 

 To test how the TEI for UMI and PMI covary, we ran two-sided Spearman’s rank 

correlations between the two metrics across all trials for each subject and counted the 

number of subjects with correlations reaching the significance level of α = .05. 

 

Within- and cross-label decoding of RNN and fMRI data 

 To assess where in the brain context and priority are represented, we carried out a 

series of decoding analyses applying the following logic. If a region represents context, 

any given stimulus item will be represented differently when it has the status of, for 

example, Sample 1 versus when it has the status of Sample 2. If a decoder applied to data 

from this region can be successfully trained to classify stimulus identity when the data 

are labeled as Sample 1 (successful “within-label” decoding), it should fail to decode 

stimulus identity when the data are relabeled as Sample 2 (unsuccessful cross-label 

decoding). If a region that does not represent context, in contrast, any given item’s 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.563608doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563608
http://creativecommons.org/licenses/by/4.0/


13 
 

representational format will not differ as a function of its context status, and so a 

decoder that can be successfully trained on the data labeled as Sample 1 should succeed 

at decoding stimulus identity when the data are relabeled as Sample 2 (successful cross-

label decoding). Before carrying out these analyses, we assumed the results with RNNs 

will have demonstrated that they can be trained to perform the DSR task. Therefore, it 

would necessarily be true that they represented both context and priority, and so 

applying these analyses to the RNN data would act as a sanity check for this logic. To be 

consistent with the fMRI dataset, RNN data were generated by testing the trained 

network on 324 trials of 9 possible orientations (counterbalanced across the identities 

of Sample 1, Sample 2, Cue 1 and Cue 2, to be analogous to the Yu, Teng and Postle 

(2020) task), and subsequently extracting the RNN hidden layer activity. For the RNN 

data we decoded orientation and for the fMRI data we decoded location. (Decoding item 

location is generally more sensitive than decoding item orientation, and so 

demonstrations of failures of cross-label decoding of item location would provide 

stronger evidence for the encoding of the stimulus property of interest.) 

For the RNN data and for the fMRI data from each ROI, we trained linear Support 

Vector Machine (SVM) multiclass classifiers to decode stimulus identity with a k-fold 

cross-validation procedure and a ‘one vs one’ coding design (see Supplementary 

Materials S1 for comparisons with results from other decoding methods). For context-

based decoding, for each subject and at each timepoint, we trained a classifier with the 

data labeled as Sample 1 then tested it on the data labeled as Sample 1 (within-label 

decoding) and with the data labeled as Sample 2 (cross-label decoding). We then 

repeated this process by training on Sample 2, and with fMRI data, for simplicity, we 

averaged the results to generate the overall accuracies for within-label decoding and 

cross-label decoding. For priority-based decoding, we used the same procedure except 

that the labels were PMI and UMI, instead of Sample 1 and Sample 2, the PMI/UMI label 

reassigned at timestep 301 (for RNN) or TR 15 (for fMRI) to reflect identity of Cue 2 (i.e., 

to account for the fact that priority status changed partway through “switch” trials). For 

the fMRI data, to evaluate the significance of decoding accuracy against chance level 

(1/9), we performed one-tailed one-sample t-tests against 1/9 on decoding accuracies 

across all subjects, and corrected for multiple comparisons using the false discovery 

rate (FDR) method. 

 

Results 

RNN  

PCA visualization of hidden layer activity 

PCA was carried out on the RNN hidden layer activity across all timepoints from 

1000 withheld testing trials with Sample 1 and Sample 2 spanning the [0°, 180°) angular 
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range and the resultant dimension-reduced activity projected into 3 subspaces that 

were spanned by PC1-PC2, PC2-PC3 and PC3-PC4, respectively, on a timepoint-to-

timepoint basis. We trained three RNNs using the same training regime, used the PCA 

visualization of hidden layer activity from the first two for hypothesis generation and 

validation, and report results from the third network. The dynamical representational 

patterns observed in all 3 networks were highly consistent (See Supplementary Movie 

1). 

Upon the presentation of Sample 1, its representation formed a ring in the subspace 

spanned by the first 2 PCs, with relative distances between stimulus values preserved 

(as shown by the smooth color gradient of the ring; Figure 3A, top left panel), such that 

stimulus value can easily be read out from this subspace. Although there are also 

smooth color gradients in the other two subspaces, their geometry is more complex, 

making it less clear if they would support readout. The ring structure in the PC1-PC2 

subspace was maintained across the ensuing ISI (see Figure 3A and Supplementary 

Movie 1). After the presentation of Sample 2, Sample 2’s identity was represented in the 

PC1-PC2 subspace, also in the form of a ring with a smooth color gradient (although the 

ring was somewhat “stretched out” relative to timestep 99; Figure 3B, bottom left 

panel). In parallel, information about Sample 1 emerged in the subspace spanned by PC3 

and PC4, in the shape of a ring with a smooth (albeit “stretched out”) color gradient 

(Figure 3B, top right panel). In effect, whereas Sample 1 was represented in the PC1-PC2 

subspace when it was the only item in WM, it was shunted to the PC3-PC4 subspace 

with the presentation of Sample 2, which replaced Sample 1 in the PC1-PC2 subspace. 

Thus, prior to cuing, the RNN encoded the ordinal context of Sample 1 and Sample 2 by 

segregating them in orthogonal subspaces.  

Upon the presentation of Cue 1 (at timestep 201), the stimulus representations 

within each subspace separated into two clusters that were defined by priority status. 

For example, Figure 3C illustrates that in the PC1-PC2 subspace, at timestep 214, trials 

for which Sample 1 was cued (denoted by triangle and circle symbols) separated from 

trials for which Sample 2 was first cued (square and plus-sign symbols). Throughout the 

Cue 1 epoch the axis along which this separation occurred rotated in multidimensional 

space over time. Thus, whereas timestep 214 was selected for Figure 3C because it 

clearly shows this separation-by-priority status in the PC1-PC2 subspace; the 

separation was visible in the PC3-PC4 earlier during this epoch, at timestep 207 (see 

Supplementary Movie 1). Thus, the RNN encoded priority status via separation within 

each subspace. 

During the delay between Cue 1 and Cue 2 (timesteps 251-300), the prioritization 

clusters merged such that, prior to the presentation of Cue 2, information about Sample 

1 and Sample 2 was again clearly observed in the PC3-PC4 subspace and in the PC1-PC2 
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subspace, respectively (Figure 3D). Finally, upon the presentation of Cue 2, the network 

representation once again separated into two priority-defined clusters, this time based 

on Cue 2’s identity, (i.e., trials for which Sample 1 was cued (denoted by circle and 

square symbols) and trials for which Sample 2 was cued (triangle and plus-sign 

symbols) separated into two clusters; Figure 3E). Thus, visualization of the 

representational of the RNN recurrent unit activities revealed that context and priority 

were represented via different transformational mechanisms, the former via the 

segregation of stimuli to orthogonal subspaces, and the latter via separation within each 

subspace.  
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Figure 3. Visualization of representational dynamics embedded in RNN hidden layer at each of 

five representative timesteps across the DSR task. Each plot contains 1000 data points, one 

corresponding to each simulated trial, and the symbols indicating that trial’s cue configuration: 

Cue 1 -> Sample 1, Cue 2 -> Sample 1(●); Cue 1 -> Sample 1, Cue 2 -> Sample 2 (▲); Cue 1 -> 

Sample 2, Cue 2 -> Sample 1 (■); Cue 1 -> Sample 2, Cue 2 -> Sample 2 (+). In each plot, an 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.24.563608doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.24.563608
http://creativecommons.org/licenses/by/4.0/


18 
 

example trial of each cue configuration is colored black for better visualization. For each of the 

five timesteps the same data are illustrated in six ways: the top row with the data labeled as 

Sample 1 and the bottom row with the data labeled as Sample 2, and for each they are projected 

into three subspaces. A. After the presentation of Sample 1 (Timestep 99). Note that because 

Sample 2 has not yet been presented, the stimulus values are haphazard. B. After the 

presentation of Sample 2 (Timestep 199). With both items in WM, but prior to cuing, Sample 1 is 

now represented in the PC3-PC4 subspace and Sample 2 in the PC1-PC2 subspace. C. During 

presentation of Cue 1 and generation of Response 1 (Timestep 214), illustrating a separation-by-

priority status in the PC1-PC2 subspace. (A comparable priority-based separation was visible in 

the PC3-PC4 subspace earlier during this same epoch (not shown).) D. During the delay between 

Cue 1 and Cue 2 (Timestep 298). E. During presentation of Cue 2 and generation of Response 2 

(Timestep 312), again illustrating a separation-by-priority status in the PC1-PC2 subspace but 

now based on Cue 2. (As with the Cue 1 epoch, a comparable priority-based separation was 

visible in the PC3-PC4 subspace earlier during this Cue 2 epoch (not shown).) 

 

Effective Dimensionality 

During the processing of Sample 1, effective dimensionality (ED) initially rose to a 

value between 3 and 4 before declining to a value of ≈ 2 during the ensuing ISI (Figure 

4). Upon the presentation of Sample 2, ED rose precipitously to a value close to 6 before 

declining steadily for the remainder of this epoch and the ensuing Delay 1.1 to a value 

just below 3, which corresponds well to the encoding of a new stimulus and the 

segregation of subspaces to represent the ordinal context. The three remaining trial 

epochs were characterized by an initial increase of ED to a value of roughly 4 followed 

by a decline back to roughly 3. Particularly noteworthy in these results is the increase in 

ED following the offset of Cue 1. Note that because a similar increase in ED was not 

observed upon the offsets of the Stimulus 1 or Stimulus 2 epochs, this effect cannot be 

simply due to a transition from one epoch to the next. Rather, this effect closely 

resembled those time-locked to the onset of Cue 1 and to the onset of Cue 2, events that 

each prompted the separation of stimuli into priority-defined clusters (Figure 3C and 

3E). Therefore, it may be that the operation of removing from the network the encoding 

of no-longer-relevant information about priority status related to Cue 1 -- 

corresponding to the merging of priority-defined clusters that was observed in the PCA 

visualization – is also an operation that entails a transient increase in ED. 
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Figure 4. The time course of effective dimensionality (ED) of the RNN hidden layer stimulus 

representations. The rectangular images above the curve denote corresponding task events. The 

black rectangles along the x-axis indicate time periods when a response was being made.   

 

Interim Discussion 

We trained RNNs to perform the DSR task and applied dimensionality reduction to 

the internal representations of the network. Visualization of the representational 

dynamics yielded several important insights. First, prior to the first prioritization cue, 

information corresponding to the two sample stimuli was represented in orthogonal 

subspaces (Panichello & Buschman, 2021). This may serve not only to individuate the 

two, but to encode the distinct ordinal context that the network needed to correctly 

interpret the cues. Second, priority status was represented by separating stimulus 

representations to distinct regions within each subspace, according to the cued 

“context”. The first observation is important because it emphasizes the importance of 

encoding trial-specific context in WM, and previous empirical studies of prioritization 

have largely overlooked this operation. The second observation is important because it 

indicates that the representation of priority status may be implemented in a different 

way, via separation within a subspace, than is ordinal context, via segregation of 

stimulus information to distinct subspaces. This difference is all the more interesting 

when one considers that to the RNN, ordinal position and priority may be just two 

dimensions of task context that play out on different time scales during a single trial. In 

this variant of DSR, one dimension of an item’s context is the order in which it was 

presented. This can be considered the “first-order” context because it uniquely 

individuates an item for the duration of a trial, and it does not change for the duration of 

the trial. (It is to first-order context that Oberauer and Lin (2017) refer when they state 

that the binding of context to a stimulus is fundamental to that stimulus being in the 
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state of being “in WM”.) A second dimension of context is priority status, and this differs 

from first-order context because its status for an item varies within the trial between 

“not applicable,” “prioritized,” and “unprioritized” (indicated by values of 0, 1, and -1, 

respectively, being input by the cue unit). Thus, priority serves as a “second-order” level 

of context, one that indicates an item’s in-the-moment status with respect to the rules of 

the task, and that cannot be interpreted in the absence of information about first-order 

context. These considerations highlight that to fully understand the flexible control of 

WM we need to understand how first-order context is coded in the brain and how it 

interfaces with higher-order context to guide thought and action.  

Recent empirical studies that have manipulated demands on first-order context in 

WM have implicated regions of frontal cortex and the intraparietal sulcus (IPS) (for 

ordinal context, see Fulvio et al., 2023; Gosseries et al., 2018; for location context, see 

Cai et al., 2020; Fulvio et al., 2023). In Yu, Teng & Postle (2020), a study that also 

manipulated priority, the location context of differently prioritized orientation stimuli 

was found to be preferentially coded in IPS, and not early visual cortex, even though 

location information was not directly tested by the task. More recently, Teng and Postle 

(Stage 1-accepted registered report) used the same stimuli and procedure, but flipped 

the roles of context and content, making orientation the first-order context used to cue 

memory of an item’s location. “Context load” was manipulated via the similarity of 

orientation of the two sample stimuli, and individual differences in context-load 

sensitivity of activity in IPS (but not early visual cortex) predicted behavioral sensitivity 

to this factor. Generalizing across these studies suggests that first-order context in WM 

may be represented more prominently in areas associated with cognitive control than 

in areas associated with stimulus representation. The same may not be true for second-

order context, because prioritization effects are prominent in early visual cortex (Yu, 

Teng & Postle, 2020; Teng & Postle, Stage 1-accepted registered report). 

These considerations, prompted by the results from the RNNs, highlighted for us 

the importance of understanding the encoding of first-order context in WM, and of 

understanding similarities and differences of neural and behavioral correlates of first-

order versus second-order context. What follows are initial attempts to do so, via 

reanalyses of an extant fMRI and an extant EEG dataset from two previous studies of the 

DSR task. 

  

Analyses of fMRI and EEG data 

The fMRI study used a DSR procedure that was most closely matched to that used 

with the RNN, including the fact that it used stimulus order as first-order context. The 

fMRI data would also allow for assessment of possible regional differences in the 

representation of the two types of context. The task used in the EEG study used location 
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as the dimension of first-order context, and so would allow an assessment of 

generalization of what has been observed for ordinal context (with the RNN and fMRI) 

to location context. (For ease of exposition, in the results that follow we will refer to 

first-order context as “context” and second-order context as “priority,” because priority 

is the only dimension of second-order context that is relevant in the DSR task.) 

  

Transformational efficacy 

One way to compare the neural representation of context versus priority is to 

assess their influence on behavior. To do this, we took an individual differences 

approach, using the variability of trial-by-trial encoding of context and of priority as 

proxies of the efficacy with which these operations were carried out. (I.e., a subject for 

whom context-based or priority-based transformations were more variable from trial-

to-trial might be expected to perform worse on the task.)   

 For context, results failed to show evidence that behavior was sensitive to 

transformational efficacy. For the fMRI data (ordinal context), transformational efficacy 

indices (TEI) did not differ for low- vs. high-error trials, for Recall 1 or Recall 2, in any of 

the 3 ROIs (early visual cortex, IPS 0-5, FEF; all t(12) < 1.74, n.s.). For the EEG data 

(location context), TEI did not differ for correct vs. incorrect trials (t(11) < 1.37, n.s.).  

For priority, there was considerable evidence that behavior was sensitive to 

transformational efficacy. For the fMRI data, in early visual cortex, TEI was lower for 

low-error than high-error trials for the UMI subspace for Recall 1 (t(12) = 1.81, p < .05) 

and for the PMI subspace for Recall 2 (t(12) = 2.06, p < .05). For IPS0-5, TEI for the PMI 

subspace was lower for low-error than high-error trials for Recall 1 (t(12) = 2.04, p 

< .05), and was lower for low-error than high-error trials for both UMI (t(12) = 3.04, p 

< .01) and PMI (t(12) = 3.00, p < .01) subspaces for Recall 2. All other comparisons, 

including all for FEF, failed to achieve significance (all t(12) < 1.57, n.s.). For the EEG 

data, TEI was lower for correct trials than incorrect trials for Recall 1 in both UMI (t(11) 

= 2.17, p < .05) and PMI (t(11) = 4.28, p < .001) subspaces.  
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Figure 5. Transformational efficacy analysis results on fMRI (Yu, Teng & Postle, 2020) and EEG 

(Fulvio & Postle, 2020) data. (A) Comparisons between average TEI for high-error and low-

error trials across subjects from the fMRI dataset. (B) Comparisons between average TEI for 

incorrect and correct trials across subjects from the EEG dataset. Top row: priority-based 

decoding; bottom row: context-based decoding. The subspace from which the TEI is calculated 

is indicated in the legends. Asterisks above bars of the same color indicate the significance level 

of the paired-sample t tests comparing the average TEI between each two groups. 

 

The TEI also offered a metric with which to begin exploring whether the 

transformation to PMI and the transformation to UMI may share a common component 

that acts on the two simultaneously (c.f., Panichello & Buschman, 2021). Specifically, we 

correlated trial-by-trial TEI for the PMI with trial-by-trial TEI for the UMI (two-sided), 

reasoning that evidence of correlation would be expected if the two do share an 

underlying mechanism. For the fMRI data, in early visual cortex, this correlation was 

significant at p < .05 for 12 out of 13 subjects, in IPS 0-5 for 11 subjects, and in FEF for 

10 subjects. For the EEG data, TEIs for PMI and UMI were significantly correlated for 10 

out of 12 subjects. All correlations were positive. 

 

Within- and cross-label decoding of RNN and fMRI data 

RNN data 

To assess the representation of both context and priority in the RNN, we performed 

within- and cross-label decoding analyses on the RNN recurrent unit activities across all 

350 timesteps from 324 novel, counterbalanced trials of 9 different orientations using a 

linear SVM classifier (Figure 6).  

For context-based decoding we obtained close to perfect decoding accuracy when 

training and testing on the labels of the same sample throughout the task (note that for 

train S2, test S2 decoder performance was at chance prior to timestep 101, due to the 
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absence of information about Sample 2 at those time steps). For cross-label decoding, 

however, accuracy was at chance level for the duration of the trial. For priority-based 

decoding, within-label decoding accuracy for both PMI and UMI was close to chance 

level prior to Cue 1. With the onset of Cue 1, for both PMI and UMI, decoder performance 

rose to close-to-perfect for the remainder of the trial. For cross-label decoding, whereas 

decoding accuracy for both PMI and UMI was above chance level prior to Cue 1, for both 

it dropped to chance level with the onset of Cue 1, and remained there for the remainder 

of the trial. Both of these sets of results validated the reasoning that a system that 

represents context and priority would not support cross-label decoding for either 

factor. 

 

 

Figure 6. Within- and cross-label decoding of RNN data across the DSR trial. (A) Context-based 

decoding. Classifiers were trained on Sample 1/2, then tested on Sample 1/2 (within-label), or 

tested on Sample 2/1 (cross-label). (B) Priority-based decoding. Classifiers were trained on 

PMI/UMI, and tested on PMI/UMI (within-label) or tested on UMI/PMI (cross-label). S1: Sample 

1, S2: Sample 2; R1: Response 1; R2: Response 2. 

 

fMRI data 

We investigated the anatomical distribution of the representation of context and 

priority during the DSR task by carrying out a series of multiclass decoding analyses on 

the fMRI dataset. In general (and unlike for the RNNs) decoder performance was far 

from ceiling, and tended to be superior for time points corresponding to trial epochs 

when stimuli were on the screen. Importantly, however, we were generally able to 

decode the stimulus identity across the whole time course with above-chance accuracy 

in every ROI, especially in the time period between Cue 1 and Cue 2, where one stimulus 
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is prioritized over the other in working memory (within-label rows of Figure 7). (The 

one exception was in IPS4 with context-based decoding; the reason for this is unclear.) 

For context, cross-label decoding revealed a marked posterior-to-anterior gradient: 

it was successful for the entirety of the trial in V1-V2 (indicating that changing the 

context does not affect the decoding accuracy, and hence, context information is likely 

ignored); successful for Cue 2 and Delay 2 epochs for IPS0 and for a smaller number of 

timepoints for IPS1 and IPS2; successful only for late Delay 1.2 for IPS3 and IPS4, and 

entirely at chance for IPS5 and FEF (Figure 7A). This indicates that context was not 

represented at the earliest stations of the visual system and become progressively more 

prominent at progressively higher levels of the dorsal stream.  

For priority, cross-label decoding for V1-V2 was successful for the beginning of the 

trial through late Delay 1.2, after which it dropped to baseline. For the remainder of the 

ROIs cross-label decoding was at baseline for the entirety of the trial. This suggests that 

priority is represented in every ROI that we investigated, albeit taking longer to 

manifest in V1-V2 (Figure 7B).  
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Figure 7. Within- and cross-label decoding analyses from the fMRI dataset. (A) Context-based 

decoding. (B) Priority-based decoding. In each graph, the two vertical solid black lines indicate 

Cue 1 and Cue 2, respectively. The blue shading around each curve shows standard error of the 

mean. The horizontal dashed line indicates the chance-level decoding accuracy of 0.11. Red 

squares below the dashed line indicate time points with significant above-chance decoding 

accuracy (p < .05, FDR-corrected across all time points). Note that the range of the y-axis varies 

from graph to graph. 

 

Discussion 

In this study we initially set out to investigate the mechanisms underlying 

prioritization on a task in which changes of priority were not predictable – the double 

serial retrocuing (DSR) task – via visualization of representational dynamics of an RNN 

trained to perform the task. Unexpectedly, results from the RNN called to our attention 

the importance of also understanding the representation of an additional dimension of 

trial-specific information, the first-order context that uniquely individuates each item 
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during the trial. Across model training, validation and testing, we saw that the encoding 

of first-order context was accomplished via the segregation into orthogonal subspaces 

of the representation of the first and second item to be presented. Unlike first-order 

context, higher-order context can change within a trial, a property that is often 

manipulated with instructional cues. In the DSR, priority status is the second-order 

context, and it is specified, then removed, then specified a second time, during the 

course of each trial. The encoding of priority was accomplished via separation within 

each context-encoding subspace of prioritized from unprioritized items. Thus, the RNN 

indicated that first- and second-order contexts are encoded via distinct mechanisms, 

segregation to orthogonal subspaces versus separation within a subspace, respectively. 

Furthermore, an effective dimensionality analysis suggested that the operation of 

resetting second-order context (as happens during the ISI separating Cue 1 and Cue 2 in 

the RNN version of the task) may make computational demands that are comparable (in 

terms of requiring additional dimensions) to those needed to establish it.  

Consistent with the distinct dynamics observed with RNNs, reanalyses of an fMRI 

and an EEG dataset established that the processing of first- and second-order contexts 

has distinct behavioral and neural profiles for humans performing the DSR. To assess 

relations to behavior, dimensionality reduction was applied to the neural data and 

transformational efficacy indices (TEI) derived for each subject for each of the two 

levels of first-order context and for each the two levels of second-order context. 

Correlations with behavior failed to show any evidence that performance is sensitive to 

variation in TEI for first-order context, whether first-or-second-to-be-presented (fMRI 

study) or top-or-bottom-location-of-presentation (EEG study). For priority (i.e., second-

order context), in contrast, there was considerable evidence that larger TEIs (indicating 

higher trial-to-trial variability) corresponded to poorer performance. In the fMRI 

dataset, the anatomical distribution of the representation of order and priority also 

differed, with the former absent from early visual cortex and becoming progressively 

more robust in more rostral ROIs, whereas the latter was evident in every ROI that we 

investigated. Thus, our results suggest that not only are representational 

transformations corresponding to first-order versus second-order context implemented 

via different mechanisms, they also differ according to their influence on behavior and 

to their distribution in the brain.  

These results share some similarities and some differences with a recent study that 

recorded neuronal activity from several brain areas of nonhuman primates (NHP) 

performing a single-retrocue working memory task (Panichello & Buschman, 2021). In 

that study, dimensionality reduction revealed that, prior to the retrocue, the two stimuli 

were represented in orthogonal subspaces that corresponded to the location at which 

each had been presented (i.e., first-order context). Upon cuing, stimulus information 
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transformed into different “post-selection” subspaces that retained first-order context 

and now also represented selection status (selected/non-selected; i.e. second-order 

context). Notably, the representations of “selected upper” and “selected lower” items 

were no longer orthogonal. The degree of cue-triggered representational 

transformation was highest in dorsolateral PFC and progressively weaker in more 

posterior regions, weakest in extrastriate visual area V4. One similarity of those results 

to those reported here is the encoding of first-order context into orthogonal subspaces. 

A notable difference between the two is the nature of the post-cue transformations.  

In the DSR, the representational transformation of one item into a PMI and the 

other into a UMI are prompted by the same cue, a design feature that allows for direct 

comparison of the two processes. For the majority of subjects in the EEG study, and in 

the majority of ROIs in the majority of subjects in the fMRI study, trial-by-trial variation 

in the TEIs for the transformation to PMI and for the transformation to UMI were 

correlated, a result consistent with the idea that a common factor underlies both. There 

are at least two possible accounts for this pattern of results that will require future 

research to adjudicate. One is a parallel mechanism whereby a single signal is “split” so 

as to trigger the simultaneous output gating of one item into the PMI state and of the 

other item into the UMI state. A second is a serial process akin to biased competition 

(c.f., Desimone & Duncan, 1995) whereby a control signal first selects the cued item, and 

a consequence of this item’s transformation to PMI is that it “pushes” the other item into 

the UMI state. Importantly, the correlation of TEIs reported here rules out what had 

been a third possibility, which was a “passive” account of the transformation to UMI 

whereby the withdrawal of attention would allow the relaxation of the representation 

into a default state such that the relaxation process would not be influenced by the 

active PMI transformation. Along with the application of second-order context that is 

prompted by the prioritization cue, the time course of effective dimensionality of the 

RNN suggests that the resetting of second-order context partway through the trial may 

be a process that requires as much active control as does its initial application. 
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