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Abstract

Two different perspectives have informed efforts to explain the link 
between the brain and behaviour. One approach seeks to identify 
neural circuit elements that carry out specific functions, emphasizing 
connectivity between neurons as a substrate for neural computations. 
Another approach centres on neural manifolds — low-dimensional 
representations of behavioural signals in neural population activity —  
and suggests that neural computations are realized by emergent 
dynamics. Although manifolds reveal an interpretable structure in 
heterogeneous neuronal activity, finding the corresponding structure 
in connectivity remains a challenge. We highlight examples in which 
establishing the correspondence between low-dimensional activity  
and connectivity has been possible, unifying the neural manifold and 
circuit perspectives. This relationship is conspicuous in systems in 
which the geometry of neural responses mirrors their spatial layout  
in the brain, such as the fly navigational system. Furthermore, we 
describe evidence that, in systems in which neural responses are 
heterogeneous, the circuit comprises interactions between activity 
patterns on the manifold via low-rank connectivity. We suggest that 
unifying the manifold and circuit approaches is important if we are  
to be able to causally test theories about the neural computations  
that underlie behaviour.
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description of neural computation35–39. The discovery of interpret-
able manifolds in multiple brain areas and behavioural tasks suggests 
that computation through dynamics on a manifold may be a general 
principle for the organization of heterogeneous neural responses in 
the brain40,41.

Although neural manifolds concisely summarize heterogene-
ous single-cell responses, they provide only a descriptive model of 
neural computation. Without links to causal mechanisms, the mani-
fold description lacks the power to generate testable predictions for 
experiments. It is evident that correlations in neural responses arise 
from constraints posed by the underlying network connectivity; how-
ever, the relationship between the neural manifold structure and the 
 connectivity that gave rise to it remains largely unappreciated.

In this Perspective, we synthesize recent theoretical and experi-
mental work that links neural manifolds to their underlying circuit 
mechanisms, suggesting that the manifold and circuit perspectives on 
neural computation are inseparable. Although several recent reviews 
have highlighted insights provided by studies focusing on neural 
manifolds32,40–42 and circuits43,44 separately, we advocate here for the 
integration of neural manifold and circuit approaches to cognition. 
We review the fly’s head direction system as an example of convergence 
between the manifold and circuit structure that has been confirmed 
experimentally. We then discuss recent theoretical work suggesting 
that similar convergence may exist in systems with distributed mixed 
selectivity. Experimental validation of this correspondence will require 
the connectivity and activity of the same neurons to be mapped or the 
model predictions to be tested in perturbation experiments. We argue 
that theorists and experimentalists should not satisfy themselves with 
descriptions of neural computations as dynamics on manifolds but 
should, instead, seek understanding that integrates circuit connectivity, 
dynamics and behaviour.

Circuit–manifold convergence: head direction 
system
The head direction system is the best-studied example of a conver-
gence between a neural manifold and circuit structure that has been 
confirmed experimentally at the single-cell level45–47. The function of the 
head direction system is to represent the direction in which an animal 
is heading and to update this representation according to information 
received about the animal’s angular velocity input and the position of 
visual landmarks.

The ring manifold for head direction
The head direction angle is a one-dimensional circular variable (Box 1), 
which is topologically equivalent to a ring (Fig. 1a). Consistent with this 
topology, neural responses in the head direction systems of the mouse48 
and the fruit fly Drosophila melanogaster49 organize on a manifold with 
ring topology, such that the position of the neural population activity 
on the ring manifold parametrically encodes the head direction (Fig. 1a).

The ring manifold in the fly is beautifully conspicuous owing to the 
simple physical layout of the ellipsoid body, the core neuropil in the fly 
head direction system49, within which topographically organized neural 
responses can be directly visualized using calcium imaging (Fig. 1b). 
The ellipsoid body has a circular structure and the neurons within the  
ellipsoid body (called E-PG neurons) display a ‘bump’ of activity within 
this circle, indicating that a small set of neighbouring neurons is active, 
at any given time. The location of this activity bump within the circle 
precisely tracks the actual head direction of the fly (Fig. 1b), moving as 
it rotates49,50 and adjusting relative to visual landmarks49. Furthermore, 

Introduction
Behavioural and cognitive functions emerge from the dynamic interac-
tions of many neurons wired into circuits. Understanding how circuit 
connectivity gives rise to neural dynamics and behaviour is a central 
goal in systems neuroscience. This problem, however, remains unre-
solved, in part owing to the experimental challenge of measuring both 
the connectivity and the activity of the same neurons during behaviour. 
Although stunning technological advances have enabled us to record 
activity from increasingly large populations of neurons1–3, the obser-
vational data that these experiments generate do not unambiguously 
point to circuit mechanisms. Likewise, reconstructions of anatomical 
connectivity4–7 constrain the space of possible neural dynamics but do 
not uniquely predict the activity patterns that arise from the circuit 
to control specific behaviours. Therefore, theory and computational 
modelling have been instrumental in bridging the gaps between circuit 
connectivity, neural dynamics and behavioural functions.

Traditionally, theoretical models hypothesize possible circuit 
mechanisms to reproduce the neural responses and behaviour 
observed in experiments8–14. In these circuit models, the recurrent 
connectivity is usually hand-crafted to produce the neural activity 
patterns that are needed to solve a particular behavioural task. For 
example, clustered connectivity (in which there are stronger connec-
tions within than between clusters of neurons) gives rise to discrete 
attractors (self-sustained and stable states of the system) in neural 
dynamics, which can support categorical decision-making10,15–17. When 
triggered by sensory input, the network activity converges to one of the 
attractors, each of which represents a different choice alternative10,18. In 
a similar manner, circuit models have been used to relate connectivity 
structure to the dynamical-system description of neural computation 
across many cognitive tasks19,20. Such links are powerful because they 
enable us to predict the behavioural effects of circuit perturbations 
(such as changes in the excitation–inhibition balance21,22), opening 
up the possibility that we can experimentally test the hypothesized 
causal mechanisms23–25.

However, recently available large-scale recordings have exposed 
a rich complexity of neural responses in the brain26 that cannot be 
explained by classical circuit models, which usually assume a simple 
hand-crafted connectivity structure and, thus, produce functionally 
homogeneous neural responses. For example, in the discrete attrac-
tor network model with clustered connectivity described above, all 
neurons within a single cluster show the same selectivity for one choice 
and respond with a similar time course10,18. By contrast, recordings 
from cortical neurons during cognitive tasks show that single neu-
rons exhibit complex mixed selectivity for multiple task variables 
and diverse temporal response profiles27–30. Tying this complex and 
heterogeneous activity to the underlying circuit mechanism thus poses 
a formidable challenge.

Over the past decade, multiple statistical techniques have emerged 
that can find structure in heterogeneous neural responses31–34 (Box 1). 
Although diverse, the responses of different neurons in a population 
are usually tightly correlated during behavioural tasks, meaning that 
the population expresses only a restricted set of activity patterns. 
Geometrically, we can picture this set of permissible activity patterns 
as a surface in a neural population state space in which each axis rep-
resents the activity of one neuron (Box 1). This surface — referred to as 
the neural manifold — is often low-dimensional and reveals interpret-
able structure in the neural population activity related to behavioural 
task execution. Modelling how neural population dynamics unfold 
along the manifold as the task progresses provides a dynamical-system 
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only one activity bump is present at any given time and an existing 
activity bump disappears when another artificial bump is induced by 
optogenetic stimulation51,52. Together, the uniqueness of the bump 
and its movement with the angular velocity establish the functional 
significance of the ring manifold.

By contrast, the rodent’s head direction system is more complex, 
involving many brain regions in which head direction cells are scat-
tered, and there is no evidence so far for a topographic ring structure 
organization46,53. Nevertheless, the responses of head direction cells 
in the anterodorsal thalamic nucleus48 and post-subiculum54 of mice 
also form a ring manifold. The ring is nonlinearly embedded, twisting 
through various dimensions in the high-dimensional neural population 
space48 (Fig. 1a). The manifold embedding is jointly defined by the tun-
ing curves of all neurons in the population34 (Box 1). Some of these neu-
rons have complex, multimodal tuning to the head direction48,54, which 
can affect the manifold embedding without changing the underlying 
ring topology. Thus, complex tuning can be consistent with a simple 
topology of neural population responses, and manifold analyses can 
reveal this simple structure in heterogeneous single-cell responses.

Ring attractor models
How does the ring manifold for head direction arise from circuit con-
nectivity? Theoretical models can suggest an answer to this question. 
In one type of classical neural circuit model (Box 2), called a ring attrac-
tor model, the head direction cells are arranged on a circle and wired 
with strong local excitatory and uniform inhibitory connections8,55,56 
(Fig. 1c). Each cell has bell-shaped tuning for its preferred head orienta-
tion angle and, owing to the balance of excitation and inhibition, the 
network activity localizes into a single bump representing the current 
head orientation angle. In the absence of external inputs (such as those 
representing angular velocity or visual landmarks), the activity bump 
is persistent because of local recurrent excitation and unique owing 
to global inhibition (that is, only a single bump exists at all times). 
This ring attractor model also provides a circuit mechanism through 
which the head direction encoding on the manifold can be updated. 
Landmark cells are hypothesized to carry information about visual 
cues and to provide direct localized input to the corresponding head 
direction cells57 (Fig. 1c), whereas clockwise and anticlockwise rotation 
cells are hypothesized to update the bump location in response to 
self-motion8,58. The rotation cells are activated by the angular velocity 
input and update the bump location via local asymmetric recurrent 
connections with the head direction cells. Each group of rotation cells 
receives input from its corresponding group of head direction cells and  
projects to the clockwise or anticlockwise neighbours of that head 
direction cell (Fig. 1c).

The ring attractor model accounts for all salient features of the 
ring manifold and dynamics in the fly ellipsoid body, although it does 
not reproduce the complex tuning curves of some head direction cells 
in rodents48,54. It is important to note that the topology of the connec-
tivity can be distinct from its spatial layout in the brain tissue. That is, 
the ring topology in connectivity can arise in model networks in which 
neurons are not spatially arranged on a ring59, consistent with the lack 
of spatial topography in the rodent head direction system53. Further-
more, very similar dynamics on a ring manifold can arise from different 
biophysical mechanisms. For example, modelling has shown that the 
ring manifold topology and dynamics can emerge from structured 
inhibition between rotation and head direction cells rather than local 
recurrent excitation46,58, consistent with the lack of strong recurrent 
connections between head direction cells that has been observed in 

Box 1

Neural manifolds
Task variables refer to the discrete or continuous parameters of  
a task, as well as to related variables for intermediate representa-
tions and computations. These include stimulus parameters (such 
as the orientation or colour of a visual stimulus), variables that reflect 
the state of the environment (such as current spatial position or 
head orientation; see the figure, part a) and unobserved cognitive 
representations such as decision variables or accumulated evidence 
towards a choice. Unobserved variables are called latent variables.

Task variables are encoded by neural activity in the brain. The 
neural code can be summarized on the level of individual neurons 
in the form of tuning curves that describe a neuron’s firing rate as 
a function of particular task variables (see the figure, part b). For 
example, neurons in the primary visual cortex have bell-shaped 
tuning curves for the orientation of a stimulus, with each curve 
being centred at the preferred orientation angle of the neuron141.  
In many brain regions, the responses of single neurons are complex 
and heterogeneous, with each neuron being tuned for a mixture 
of task variables27–30,48 and many neurons responding to each task 
variable. These properties of the neural code are referred to as 
distributed mixed selectivity.

The joint activity of all neurons in a population can be 
described in a neural population state space, an N-dimensional 
Euclidian space in which each axis corresponds to the firing rate 
of one neuron (see the figure, part c). A population state is a point 
in this N-dimensional space and the evolution of neural responses 
over time forms a trajectory that reflects the collective dynamics 
of all neurons, called neural population dynamics40. In many 
tasks and brain areas, neural population activity does not explore 
all possible states but stays within a confined region of the state 
space31–34,42. The neural manifold is the continuous set of points 
in a state space that are explored by neural population activity 
(see the figure, part c). The position of neural population activity 
on a manifold at a given time often encodes task variables. 
For example, the ring manifold is a one-dimensional manifold 
parameterized by an angle α, thus the ring manifold can encode 
circular variables such as head direction48 or stimulus location 
at a particular spatial angle in a working memory task29. In some 
cases, the neural manifold can be nonlinearly embedded in the 
high-dimensional neural population state space. The shape of  
this embedding (that is, the manifold’s geometry) depends on  
the tuning curves of all neurons in the population34.
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rodents46. Thus, it is clear that a neural manifold does not uniquely 
determine the biophysical details of the circuit connectivity, highlight-
ing the need for experimental measurements of connectivity to evaluate  
the candidate biophysical mechanisms suggested by theoretical models.

Complete circuit reconstruction
One way to precisely link a neural manifold to its underlying circuit is 
to directly measure the activity and anatomical connectivity of all of 

the neurons in the relevant circuits. In flies, such circuit dissection con-
firmed — with astonishing precision — the predictions of the ring attrac-
tor models described above49,51,52,60. Powerful experimental techniques, 
including RNA profiling and connectivity reconstruction through elec-
tron microscopy, enabled the identification of many cell types in the 
D. melanogaster central complex and a description of their anatomi-
cal connectivity with single-cell resolution47,61. This analysis revealed 
connectivity among many cell types in the fly head direction system, 
allowing the ring attractor model to be tested directly. It was found that 
local excitation between E-PG neurons sustains the activity bump in the 
ellipsoid body. The rotation cells predicted by the model were identified 
as P-EN neurons located in another neuropil called the protocerebral 
bridge. The recurrent connectivity pattern between EP-G and P-EN 
neurons was found to be asymmetric, meaning that P-EN neurons in  
the left and right sides of the protocerebral bridge rotate the position 
of the EP-G activity bump clockwise or anticlockwise, respectively47,50. 
These findings confirm precisely the angular velocity integration mech-
anism suggested in the ring attractor models. Many other cell types were 
also identified and their connectivity and function dissected47, reveal-
ing a more complex anatomical structure than had been predicted by 
minimal circuit models. In turn, this led to the development of refined 
models incorporating the discovered anatomy50,57,62–64.
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Fig. 1 | Convergence of a manifold and circuit in the head direction system. 
a, Head direction angle is a one-dimensional circular variable, α (upper left). 
A neural manifold discovered from neural population activity recorded in the 
anterodorsal thalamic nucleus of mice as they explore their surroundings takes 
the form of a one-dimensional ring that smoothly encodes head direction48. This 
is shown in a visualization of the manifold created using the Isomap algorithm140 
(upper right). Each dot corresponds to the population activity state at a single 
time. Colour coding represents parameterization of the manifold by a one-
dimensional circular variable α, which closely matches the measured heading 
angle up to a choice of origin and direction. The ring manifold is nonlinearly 
embedded in the neural population state space. The shape of this embedding 
is determined by the heterogeneous and nonlinear tuning curves of individual 
neurons, five examples of which are shown in the lower panel48. b, E-PG neurons  
in the Drosophila melanogaster head direction system are arranged in a circle 
within the ellipsoid body of the fly brain. Calcium imaging reveals a localized ‘bump’  
of neuronal activity within the ring encoding the head direction at any given time 
(upper left; F, fluorescence intensity in arbitrary units)49,50. Upper centre: the 
population vector average (PVA; gold arrow) estimates the position of the centre 
of the bump on the circle by summing vectors (dashed red arrows) pointing in the 
directions of each of 22.5° wedges around the ellipsoid body with length equal to 
the instantaneous calcium activity in each wedge. Shade of blue indicates calcium 
activity in each wedge. The ellipsoid body is unwrapped in a vertical axis (upper 
right; gold bar indicates angle of PVA) to display the population time series in the 
lower panel. The PVA accurately tracks the actual head direction of the animal 
(lower panel)50. c, A ring attractor model accounts for the ring manifold topology 
and dynamics of the head direction cells55,56. The model consists of head direction 
cells arranged in a ring and receiving local excitatory (red) and uniform inhibi-
tory (blue) connections (upper left; cells coloured according to their preferred  
head direction). Landmark cells provide direct input to the corresponding head 
direction cells (upper right; shade of blue represents the firing rate). Left and 
right rotation cells (lower panels) make asymmetric recurrent connections with 
head direction cells, projecting strongly to either the left or right neighbour 
of the head direction cell from which they receive input. Upper right and lower 
images in panel a are adapted from ref. 48, Springer Nature Ltd. Panel b is adapted 
from ref. 50, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Panel c 
is adapted with permission from refs. 46,51, AAAS and Annual Reviews.
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The fruit fly head direction system is a unique example of a situ-
ation in which theoretical predictions made more than 20 years ago 
were confirmed experimentally at the level of single-cell connectivity, 
establishing a perfect correspondence between the circuit structure, 
dynamics on the neural manifold and behaviour. Although neural 
responses in the rodent head direction system organize on a similar 
ring manifold, they show more heterogeneity and lack a clear spatial 
topography. The precise circuit mechanism that generates dynamics 
on the ring manifold in the rodent head direction system is thus yet to 
be discovered.

Towards convergence in grid cells
Grid cells in the mammalian medial entorhinal cortex (MEC) provide 
an example of a navigational system for which the manifold and circuit 
perspectives have begun to converge, although their correspondence 
has not yet been established directly. MEC grid cells encode an animal’s 
location in space and update this representation using information 
about the animal’s speed and direction of motion, a computation 
known as path integration65. Spatial location in a flat environment 

is a two-dimensional variable that does not, per se, imply a periodic 
code. However, grid cells have been shown to represent space with 
a remarkably regular periodic pattern66 (Fig. 2a). Grid cells activate 
whenever the animal’s position coincides with any vertex of a regu-
lar grid of equilateral triangles spanning the environment. Grids of 
neighbouring cells share the same orientation and spacing but dif-
fer in their vertex locations (their phases). Across the MEC, grid cells 
cluster into a small number of anatomically overlapping modules with 
distinct scales and orientations of grids67. Within a grid module, phase 
relationships between pairs of grid cells are conserved in different 
environments despite extensive deformations of single-cell tuning68. 
Similar to the head direction system, the grid cell map is anchored to 
external  landmarks but persists in their absence69.

A toroidal manifold for spatial position
The grid-like periodicity of spatial tuning in single grid cells suggests 
that their population responses will organize on a low-dimensional 
manifold. As the tuning of single cells within a module varies only by 
spatial phase, it is expected that their population responses form a 

Box 2

Neural circuits
A neural circuit is a network of nodes in which the connections, 
dynamics of each node’s activity and inputs are specified. According 
to the traditional view, the nodes in the network can be individual 
neurons, clusters of neurons or brain areas. The connections between 
nodes implement neural computations. For example, recurrent 
self-excitation in two clusters of excitatory neurons and cross-
inhibition mediated by a third cluster of inhibitory neurons (see the 
figure, part a) can generate ‘winner-take-all’ dynamics, in which two 
discrete attractors support decision-making10,18. A network in which 
connectivity is spatially arranged in a pattern with local excitation 
and global inhibition can generate a continuous attractor (such as a 
ring attractor), in which a localized subset of active neurons (‘bump’) 
within the spatially organized network represents a continuous task 
variable (such as head direction, see Fig. 1b,c).

Traditional neural circuit models implement interpretable 
mechanisms that can relate connectivity to dynamics and behaviour. 
Interpretable mechanisms enable us to predict the behavioural 
effects of specific circuit perturbations, making it possible to 
experimentally test circuit mechanisms21–25. However, the simple 
connectivity structure of these traditional circuit models results in 
homogeneous tuning (for example, all neurons within a cluster have 
the same response profile), which is inconsistent with the distributed 
mixed selectivity (Box 1) that has been observed in brain recordings.

Artificial recurrent neural networks (RNNs) are a class of neural 
circuit models that can account for distributed mixed selectivity. An 
RNN consists of many recurrently connected units, with the weights 
of the connections optimized to produce a desired output from a 
specific external input (see the figure, part b). RNNs can be trained 
to reproduce behavioural responses in a cognitive task111,112,116–119, low-
dimensional manifolds142 or recorded brain activity (in which case 
the activity of each RNN unit tracks a target experimental neuron127). 

Distributed mixed selectivity emerges in RNNs through training111. 
However, trained RNN connectivity appears complex and the circuit 
mechanism that generates task-relevant dynamics in these networks  
is not immediately interpretable. Two RNNs trained to perform the same 
task may produce similar low-dimensional responses but have distinct 
high-dimensional connectivity117. Finding an interpretable connectivity 
structure that generates low-dimensional responses is important 
because it can allow us to determine whether different RNNs implement  
similar circuit mechanisms and to design perturbations to causally 
test these mechanisms.

Despite these challenges, there is evidence that interpretable 
circuit mechanisms can exist in networks with distributed mixed 
selectivity. The connectivity of such networks can contain a low-
dimensional structure that implements casual interactions between 
distributed activity patterns on the manifold120,121,124,139, similar to 
the interactions between nodes in a low-dimensional latent circuit 
(Box 4). This low-dimensional connectivity structure can be added  
to random connectivity in RNNs89,120, making it challenging to  
identify. However, traditional circuit models can guide the search  
for interpretable mechanisms in RNNs89,138.
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two-dimensional torus in state space70. Intuitively, the population 
response of grid cells within a module repeats cyclically whenever the 
animal moves along one of the two directions defining the grid period.

Evidence for such a torus-like manifold structure was discovered 
recently in a study that used Neuropixels probes to obtain simultaneous 

recordings from thousands of MEC grid cells in freely moving or sleep-
ing rats71 (Fig. 2b). This work showed that, as the animal moves in an 
open field, the population activity within a module also moves continu-
ously across the toroidal manifold, updating the spatial representa-
tion via path integration71. The same toroidal manifold persists in the 
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Fig. 2 | Manifolds and circuits for spatial position encoding. a, Responses  
of three example grid cells from a single grid module (in which cells have  
similar spatially periodic activity) in a freely moving rat in two different  
spatial environments. The firing rate maps indicate a reduced periodicity  
of spatial tuning in the second environment71. b, Despite changes in the spatial 
tuning of individual grid cells, neural population responses organize on the 
same toroidal manifold in different environments. Each point in the neural 
population state space represents the population activity state at a single time 
(dots coloured by first principal component of neural responses). Black dots 
indicate the population state at times when cell 2 fires. The clustering of black 
dots at the same location on the toroidal manifold indicates that there are stable 
relationships between the activity of grid cells across environments, which 
suggests that the manifold arises from a recurrent connectivity structure as 
in continuous attractor models68. c, A two-dimensional continuous attractor 
network model accounts for the toroidal manifold and path integration 
dynamics in grid cells77,78. The model consists of a network of grid cells spatially 
arranged on a two-dimensional torus (upper left; dots represent cells, red 
lines show connections made by one example cell). We can unfold the toroidal 
network into a two-dimensional sheet, in which the cells at opposite boundaries 
connect to each other (upper right; arrows mark connected boundaries). In this 
network, multiple focused areas (bumps) of activity form spontaneously, with 
their spatial pattern corresponding to co-active grid cells in the population. 
As the animal moves, these activity bumps move across the two-dimensional 

network to update the representation of spatial location via path integration. 
The movement of these bumps is mediated by local asymmetric connections 
between the grid cells and additional two-dimensional layers of cells that encode 
both head direction, speed and position (lower right). These layers of cells 
receive direct input from head direction cells (lower left) and are analogous to 
rotation cells in the ring attractor model (see Fig. 1). d, Grid-like responses can 
emerge in artificial recurrent neural networks (RNNs) trained to perform path 
integration88,89. Initially, RNN units are not arranged in any space; however, after 
training, they can be sorted on a two-dimensional sheet (upper left) so that units 
with similar phases of their grid tuning are close in space. As the RNN follows a 
simulated path through an environment (right panel), stable activity patterns 
on the two-dimensional neural sheet reveal multiple bumps with a topographic 
hexagonal grid activation (lower left, shown at three distinct locations along 
the simulated path), similar to that seen in classical attractor models. e, The 
connections from an individual RNN unit to its neighbours on the neural sheet 
appear unstructured (inset; connections made by three example units are 
shown, excitatory connections are red and inhibitory connections are blue). 
However, when averaged across many units, the connectivity reveals a structure 
in which there is local excitation (red) and global inhibition (blue), matching 
the mechanism for generating continuous attractor dynamics proposed in 
hand-crafted models. Parts a and b are adapted from ref. 71, Springer Nature Ltd. 
Part c is adapted from ref. 20, Springer Nature Ltd. Parts d and e are adapted with 
permission from ref. 89, Elsevier.
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absence of sensory input and is maintained, with minimal distortion, 
across different environments and behavioural states from wakefulness 
to sleep71. Moreover, mapping the population activity at each time to 
a point on the identified torus in state space showed that individual 
cells fired preferentially when population responses fell at a particular 
location on this torus (Fig. 2b). Thus, individual grid cells are tuned to 
specific locations on the toroidal manifold and these locations do not 
change across environments71 (Fig. 2b).

The crystalline rigidity of the toroidal manifold indicates that 
it is likely to arise from the connectivity structure in the circuit, and 
not from external input. Multiple tori (one in each module) observed 
experimentally71 could arise from multiple subnetworks with toroidal 
topology20. In contrast to the head direction system, in which head 
direction is naturally encoded as a circular variable, this toroidal struc-
ture does not reflect the topology of the underlying spatial variable 
and, thus, its functional significance is still debated. One possibility is 
that the representation of position with respect to multiple tori with 
distinct periods provides a high-capacity combinatorial encoding that 
is read out downstream by place cells72.

Discovering structure with manifold analyses. The example of grid 
cells shows that the tuning functions of single cells to external vari-
ables contain the same information as the manifold obtained from 
their trial-averaged responses34. However, manifold analyses can also 
reveal structure in neural population activity in situations in which 
estimating single-cell tuning is not possible or when the full set of 
variables encoded in neural activity are unknown. For example, dur-
ing sleep, estimating single-cell tuning curves is not possible because 
there are no behavioural variables to which neural activity can be refer-
enced. However, manifold analyses reveal the same manifolds in head 
direction cells48,54 and grid cells71 during sleep as during wakefulness, 
suggesting that they arise from anatomical connectivity. Similarly, 
manifold analyses enabled the discovery of a head direction circuit in 
the anterior hindbrain of larval zebrafish by demonstrating that neural 
responses in this area form a ring manifold73. As the fish were head 
fixed for volumetric calcium imaging, computing single-cell tuning 
to head direction was not possible. Moreover, unsupervised mani-
fold discovery methods can reveal neural representations encoding 
an expansive task knowledge beyond external physical variables74,75. 
In the hippocampus of rodents performing decision-making tasks, 
neural population activity was well described by a low-dimensional 
manifold, within which both spatial location and abstract variables 
(such as accumulated evidence) were encoded in an orderly fashion. 
The manifold thus formed a conjoined cognitive map of the task74, 
with some dimensions reflecting information beyond the measured 
behavioural variables75. Although the activity of single place cells in 
the hippocampus is known to vary substantially across repeated tri-
als, manifold analysis has shown that this variability could result from 
neural trajectories taking different paths on the manifold and may 
reflect the operation of internal cognitive processes75. Thus, manifold 
analyses enable scientific insights beyond those made possible by the 
tuning-curve approach.

Circuit mechanisms for the toroidal manifold
Continuous attractor models. Similar to the head direction system, 
continuous attractor models provide a candidate circuit mecha-
nism that can support the toroidal manifold and dynamics for path 
integration in grid cells76. These models are a direct extension of 
the one-dimensional ring attractor models into two dimensions.  

In a two-dimensional continuous attractor network model of grid 
cells, the cells are spatially arranged on a two-dimensional torus, with 
the strength of the recurrent excitatory connections between the 
cells decreasing in proportion to the distance that separates them77,78 
(Fig. 2c). In these networks, a single bump or multiple bumps of activity 
form spontaneously in a spatial pattern corresponding to the positions 
of co-active grid cells in the population, consistent with topographic  
organization of grid cells in the MEC79–81. This pattern of activity  
moves across the two-dimensional network to update the representa-
tion of spatial location via path integration according to the self-motion 
input78. The movements of activity bumps arise from local asymmetric 
connections between the grid cells and additional two-dimensional 
layers of cells that represent a combination of velocity and position, 
analogous to the layer of rotation cells in the head direction model78 
(Fig. 2c). Grid firing patterns can also arise in feedforward models in 
which spatial selectivity is inherited from external inputs82–84, but this 
mechanism is inconsistent with the rigidity of the toroidal manifold 
across environments and behavioural states. By contrast, the spatially 
arranged connectivity in attractor models naturally leads to a rigid 
manifold structure that does not change with varying input77,78,85.

Toroidal manifolds can arise in continuous attractor models that 
include either periodic boundary conditions (such that neurons at one 
boundary connect to neurons at the opposite boundary of the two-
dimensional network, forming a torus) or aperiodic boundary condi-
tions76,85, but which applies to the grid cell system is unknown. Unlike the  
fly head direction system, the anatomical connectivity supporting  
the toroidal manifold in grid cell population activity remains unknown, 
with such research being hampered by a lack of simple topography 
and the more limited set of circuit dissection tools currently available 
in mammals. In the absence of direct connectivity measurements, 
the alternative circuit models could be evaluated by testing their pre-
dictions in experiments that combine sparse neural recordings with 
global perturbation strategies76. In particular, perturbations of either 
the time constant of neurons or the gain of the recurrent inhibition 
between neurons have predictable effects on the spatial tuning rela-
tionships between pairs of cells (and hence the manifold) in candidate 
models, and these effects can be detected using only a small number of 
neurons76. Thus, cortical cooling to alter the time constant86 and drug 
infusions to alter the gain of recurrent inhibition87 are two feasible 
experimental manipulations that could, in principle, be used to test 
alternative circuit models of grid cells in future studies.

Emergent circuit mechanisms in complex networks. To help us 
understand the links between the circuit structure and neural dynam-
ics in mammalian navigational systems that have more complex and 
heterogeneous topography, we can turn to artificial recurrent neu-
ral network (RNN) models of path integration in which connectiv-
ity is not topographically arranged. RNNs can be trained to perform 
path integration by optimizing recurrent connectivity parameters. In 
these networks, representations can emerge that are similar to those 
formed by biological head direction cells and grid cells59,88,89. In the 
hand-crafted attractor models described above, the ring or toroidal 
response manifolds arise from connectivity that is spatially arranged 
in one or two dimensions, respectively. By contrast, RNN units are 
not arranged in any space, and ring and toroidal manifolds exist with-
out topographic organization of neural responses. The trained RNN 
connectivity appears complex and the mechanism through which it 
generates precisely organized neural responses is not immediately 
obvious. Uncovering the mechanism for path integration in the RNN 
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connectivity required analysis methods that arrange neurons in space 
according to their functional properties59,89 (Fig. 2d). These analyses 
revealed a hidden structure in the RNN connectivity that matches the 
mechanism used for path integration in the hand-crafted attractor 
models. In both hand-crafted models and RNNs, the precisely organized 
spatial responses arise from a similar low-dimensional connectivity 
structure; however, in RNNs this structure is additively superimposed 
over random connectivity and its presence is therefore not obvious in 
the connectivity of individual units59,89 (Fig. 2e). This means that, with-
out the prior intuition provided by the theoretical models, finding this 
low-dimensional connectivity structure would have been extremely 
challenging. This example therefore demonstrates a more general 
point: although measuring the activity and anatomical connectivity 
of the same neurons can enable direct testing of hypothesized circuit 
mechanisms with single-cell resolution89,90, without the guidance of 
theoretical models there is no universal path by which we may discover 
new mechanisms from the high-dimensional heterogeneous data. 
Therefore, theory is crucial for elucidating circuit mechanisms from 
simultaneous measurements of activity and connectivity.

Circuits with mixed selectivity
In contrast to navigational systems, the relationship between the neural 
manifold and circuit connectivity is more elusive in higher cortical 
areas that support cognitive functions, such as working memory91–94 or 
decision-making95,96. Tasks used to study cognitive functions in animal 
experiments often have a simple topological structure (Box 1), akin to 
spatial navigation tasks. For example, a common visual spatial working 
memory task requires an animal to remember a location at a particular 
angle around a circle on a screen97,98 (Fig. 3a). The remembered angle is a 
one-dimensional circular variable, just like the head direction. Similarly, 
in many decision-making tasks, task variables have a simple branching 
topology, in which diverging values of a decision variable represent 
alternative choices95. However, unlike neurons in navigational circuits, 
cortical neurons exhibit more complex and heterogeneous responses 
in these tasks, with a less obvious link to neural computation and circuit 
connectivity.

Classical circuit models of cognitive tasks
Early studies using single-cell recordings focused on the salient, inter-
pretable tuning features of single neurons that aligned with the task 
structure. During working memory maintenance, for example, some 
neurons in the primate prefrontal cortex (PFC) show persistent activity 
with stimulus-dependent tuning, providing an essential neural corre-
late of working memory91,93,94,97,98. Similarly, during decision-making, 
the firing rates of single neurons across many cortical areas tend to 
ramp up or down, diverging across trials on which the animal makes 
different choices95,99–104.

These lucid features of single-neuron responses map naturally 
to the activity in attractor network models with simple connectivity 
structures. A ring attractor model (with the same connectivity as the 
ring attractor model of the head direction cells) captures the stimulus-
dependent persistent activity observed during spatial working memory 
tasks9,105,106 (Fig. 3a). Moreover, the continuous attractor dynamics in 
this model predict the relationship between the precision of a memory 
report and fluctuations in PFC activity107 as well as memory deficits 
arising from circuit disruptions (such as altered excitation–inhibition  
balance) in mental illness21,108–110. The ramping activity associated 
with decision-making arises in discrete attractor models10,15–18. These 
networks include several groups of excitatory neurons, one for each 

choice, with stronger recurrent excitation within a group than across 
groups. The inhibitory neurons in these networks mediate winner-
take-all competition between the excitatory populations so that in 
response to a stimulus, one group elevates its firing rate represent-
ing the decision outcome. The discrete attractor models predict the 
changes in ramping activity and decision-making behaviour that occur 
when optogenetic perturbations of neural activity are performed in 
rodents23–25.

Manifolds for cognitive tasks
Recent large-scale recordings have exposed the rich complexity and 
heterogeneity of single-neuron responses in higher cortical areas  
and revealed that simple interpretable tuning, such as that described 
above, is a rare exception27–30,111,112. Only a relatively small fraction 
(5–10%) of PFC neurons show strictly tonic persistent activity during 
working memory, with all other neurons displaying complex temporal 
variations28,29 (Fig. 3b). The responses of PFC neurons are even more 
perplexing in tasks that involve interactions between multiple vari-
ables, such as context-dependent decision-making111,112. Single neurons 
show mixed selectivity, responding to combinations of multiple task 
variables, and the encoding of those variables is distributed across the 
entire neuronal population and varies over time27,30. This distributed 
mixed selectivity (Box 1) does not fit with the classical attractor models, 
in which neurons inherit homogeneous tuning properties from clus-
tered or spatially organized connectivity structures. The question that 
therefore arises is how neural computations should be understood in 
networks with distributed mixed selectivity.

Manifold analysis approaches this question by finding low- 
dimensional representations of task variables in the population state 
space that are not obvious in the heterogeneous responses of single  
neurons. To identify the manifold structure in neural response data, 
many dimensionality reduction methods model heterogeneous 
responses as linear combinations of a few latent variables to extract 
a low-dimensional subspace within the population state space in which 
task-related dynamics can be observed31,113–115. The manifold structure 
found within this low-dimensional subspace often agrees with the 
topology of task variables. For example, in the spatial working memory 
task described above, the high-dimensional PFC population activity 
contains a low-dimensional subspace in which stimulus representa-
tions are stable across time and arranged on a circle representing the 
remembered location29 (Fig. 3b). The variation of population activ-
ity over time occurs in an orthogonal subspace, and therefore does 
not interfere with the stable mnemonic representation. In decision-
making tasks, low-dimensional projections of neural population 
activity reveal branching trajectories that diverge at each decision 
point111,112 (Fig. 3c).

Manifold analyses have uncovered manifolds that mirror the topol-
ogy of task variables in many cortical areas and cognitive tasks27–30,111,112. 
Manifolds and single-neuron heterogeneity qualitatively similar to 
those observed in brain recordings also emerge in RNNs trained  
to perform cognitive tasks by optimizing recurrent connectivity 
parameters111,112,116–119 (Box 2). These discoveries led to the proposition 
that computation through dynamics on a manifold may be a general 
principle for the organization of heterogeneous neural responses in 
the brain40. Moreover, it has been suggested that understanding com-
putation on the level of connectivity and circuits may be unnecessary 
or even intractable in systems with distributed mixed selectivity41.  
Is such a strong proposition warranted, or can the manifold and circuit 
perspectives be reconciled despite single-cell heterogeneity?
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Linking manifolds to connectivity
Low-rank recurrent neural networks. It is possible to reconcile the 
manifold and circuit perspectives by engineering nonlinear high-
dimensional RNNs in which dynamics on a low-dimensional manifold 

arise from low-dimensional connectivity (Box 3). In these RNNs, con-
nectivity is constructed to be low rank120,121. Rank-one connectivity is 
an outer product of two high-dimensional vectors m and n of length N 
(where N is the number of neurons in the high-dimensional network). 
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Fig. 3 | Low-dimensional task manifolds in heterogeneous responses of cortical 
neurons. a, A visual spatial working memory task requires an animal to remember 
the location of a stimulus positioned at a particular angle around a circle on a 
screen (upper left; spatial cues coloured according to their angle). A ring attractor 
model (middle left) in which there is strong local excitation (red lines) and global 
inhibition (blue lines) between model neurons results in stimulus-dependent per-
sistent activity in the model neurons9,105,106. A representation of this activity in three 
model neurons in response to a stimulus in different locations (location indicated 
by colour) is shown in the right panels (y axis represents firing rate in Hertz), based 
on the findings reported in ref. 9. This model produces tuning curves for individual 
model neurons with identical shapes that uniformly cover the stimulus space 
(lower left). b, In the spatial working memory task, responses of single neurons 
recorded in the primate prefrontal cortex (PFC) show heterogeneous temporal 
profiles and stimulus tuning (left panels; responses of three example PFC neurons, 
using same colour coding as part a)29. The PFC population activity contains a linear 
subspace (right; grey circle) with stable stimulus encoding on a ring, where the  
position on the ring represents the remembered location. The population activity 
varies over time in an orthogonal non-coding subspace (right; coloured trajectories)  

without interfering with this stable mnemonic representation. The responses  
of single PFC neurons are heterogeneous because the coding and non-coding  
subspaces are rotated with respect to neural axes in the population state space. 
c, A delayed match-to-category task requires an animal to indicate whether a test 
stimulus belongs to the same category as a previously shown sample stimulus  
(left panel). This task involves two sequential decisions: what is the sample category 
and does it match the test category? In recurrent neural networks (RNNs) trained to 
perform this task, population responses form a branching manifold, which is visual-
ized by projecting responses of RNN units onto the first three principal components112 
(right panel). Colours indicate task conditions corresponding to different pairs of 
sample and test categories. During the sample period, trajectories diverge (red and 
blue circles) and then approach one of two distinct states representing the memory 
of the sample category during the delay (red and blue triangles). During the test 
period, trajectories again diverge towards two other states representing match or 
non-match decisions (green and black crosses). Similar branching manifolds are 
observed in the population activity of neurons recorded in the lateral intraparietal 
area and PFC as animals complete the task112. Part b is adapted with permission  
from ref. 29, PNAS. Part c is adapted with permission from ref. 112, Elsevier.
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With this connectivity structure, network dynamics are confined to 
the two-dimensional subspace of the neural activity space spanned by 
vectors m and n when external input is aligned with n. Moreover, activity 
along direction n drives activity along direction m, creating a substrate 
for implementing computations. By composing low-rank connectivity 
from several rank-one terms (Box 3), it is possible to construct RNNs 
with dynamics flowing on manifolds spanning a few directions in neural 
activity space, designed to solve various cognitive tasks120,122. It is, how-
ever, important to note that, although low-rank RNNs can be engineered 
to solve certain tasks, it does not necessarily follow that brain networks 
use this particular connectivity structure to solve the same tasks.  

Low-rank solutions are one of many candidate mechanisms, and it 
remains unknown whether low-dimensional connectivity underlies 
manifolds in other heterogeneous networks, such as task-optimized 
RNNs or the brain. Moreover, it is unclear whether low-rank RNNs utilize 
mechanisms similar to classical circuit models or implement truly novel 
solutions that are emergent in high-dimensional nonlinear systems.

Latent circuits in heterogeneous networks. We can start to gain a 
better understanding of the link between low-rank connectivity in large 
recurrent networks and low-dimensional circuits with few populations 
interacting via excitation and inhibition through an examination of 

Box 3

Dimensionality of manifolds and circuits
Dimensionality generally refers to the number of independent 
variables that are necessary to describe an object, such as a neural 
manifold. We can define different types of dimensionality depending 
on the choice of these variables. The linear dimensionality (sometimes 
called embedding dimensionality42) is the smallest number of 
orthogonal directions that span a linear subspace containing the 
manifold. The nonlinear intrinsic dimensionality is the minimal number 
of continuous variables necessary to parameterize the manifold. 
For example, the intrinsic dimensionality of the ring manifold is one, 
because it can be parameterized by a single angular variable (Box 1). 
The linear dimensionality of the ring manifold in the neural state space 
depends on the width of the tuning curves of individual neurons and 
can be very high if the tuning curves are narrow34.

The dimensionality of a neural manifold depends, in part, on the 
connectivity of the underlying neural circuit. Such connectivity can 
be described by a matrix J in which the elements Jij specify the weight 
of connection from neuron j to neuron i. A connectivity matrix can 
also contain a low-dimensional interpretable structure. One example 
of low-dimensional connectivity is low-rank connectivity. The rank of  
a connectivity matrix is the number of orthogonal vectors needed  
to reconstruct the matrix. A connectivity matrix is low rank if its  
N columns (or rows) can be assembled as linear combinations of  
a much smaller number k ≪ N of columns (or rows)143. The simplest 
possible type of low-rank connectivity is a rank-one connectivity 
matrix J, which is fully specified by two N-dimensional vectors,  
m = {mi} and n = {nj} (i and j are indices taking values from 1 to N; see  
the figure, part a). Every column of a rank-one matrix J is a multiple  
of the vector m, and every row is a multiple of the vector n (that is,  
J is an outer product of m and n):

J mn J m n, .T
ij i j= =

One way to compose a low-rank connectivity matrix is by adding 
together k rank-one terms (see the figure, part b):

J m n .l
k

l l
T

1 ( ) ( )∑= =

Another example of a low-dimensional interpretable connectivity 
structure is the circulant connectivity matrix that is used in a ring 
attractor model. The circulant matrix is fully specified by a single 
vector n that defines the connectivity profile of one neuron143. Each 
row of a circulant matrix is obtained through a circular shift of the 
vector n one element to the right relative to the preceding row  
(see the figure, part c). Although this matrix can be high rank if  
the connectivity profile is narrow, it contains an interpretable  
low-dimensional structure.

It is unknown whether low-dimensional manifolds always arise 
from low-dimensional connectivity, or whether they can emerge 
without any low-dimensional structure in either the input or 
recurrent connectivity. Many dimensionality reduction methods 
exist for finding low-dimensional manifolds in neural population 
activity, but there are no general approaches for finding the 
corresponding low-dimensional structure in the connectivity. In this 
Perspective, we highlight examples in which it has been possible to 
establish a relationship between the low-dimensional activity and 
connectivity55,76,89,120,124. Finding such cases is important because they 
reveal interpretable circuit mechanisms that can be validated in 
perturbation experiments.
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low-rank linear dynamical systems123. Linear dynamical systems provide 
a mathematically tractable approximation to nonlinear brain dynam-
ics111. In a high-dimensional linear network with low-rank connectivity 
composed of a few orthogonal vectors q(i), the dynamics are confined to 
a low-dimensional subspace spanned by these vectors123 (Box 4). Each 
vector q(i) specifies a direction in the high-dimensional state space. 
These vectors, assembled as columns into the orthonormal matrix Q, 
define the low-dimensional subspace in which the dynamics unfold. 
Mathematically, these dynamics correspond to a high-dimensional 
embedding of a low-dimensional dynamical system, in which recurrent 
connectivity captures causal interactions between directions q(i) along 
the manifold. Thus, the low-dimensional dynamical system is latent  
in the high-dimensional network31, and we call it the latent circuit122,124. 
The embedding matrix Q provides a mapping between the latent circuit 
and the high-dimensional network such that a latent node i maps onto 
a direction q(i). A connection between two latent nodes maps onto a  
distributed connectivity pattern given by an outer product of two 
corresponding directions along the manifold. This mapping allows 

us to translate perturbations of activity and connectivity from the 
low-dimensional circuit onto the high-dimensional network, making 
it possible to causally test the circuit mechanism. Thus, in linear net-
works, we can formally link the manifold and circuit perspectives with a 
latent circuit structure that constrains dynamics on the manifold122,124.

To what extent does the intuition gained from such linear systems 
extend to nonlinear recurrent networks such as RNNs or the brain?  
A recent preprint124 developed an approach for fitting high-dimensional 
neural responses with a model in which these responses arise as an 
embedding of low-dimensional dynamics generated by a nonlinear 
latent circuit. Using this approach, the latent circuit connectivity and 
the embedding matrix can be simultaneously inferred from neural 
responses, making it equally applicable to the activity generated by 
an RNN or the brain. In general, however, it is unclear whether a low- 
dimensional circuit can satisfactorily account for the responses of 
a high-dimensional network. If the solutions to cognitive tasks that 
emerge in high-dimensional systems are qualitatively different from 
those that operate in small circuits, then a low-dimensional circuit 

Box 4

Latent circuits in linear low-rank networks
Linear dynamical systems provide a simple case in which we can 
link low-rank networks with the classical picture of a few nodes 
interacting via excitatory and inhibitory connections in a circuit. 
Consider a low-dimensional linear dynamical system:

x Ax, (1) =

which we can view as a circuit with a small number n of nodes 
interacting via an n × n recurrent connectivity matrix A = {Aij} (see 
the figure, part a). We can embed these low-dimensional dynamics 
in a high-dimensional state space to construct a high-dimensional 
linear dynamical system in which this circuit is latent. We can do 
this by considering the N-dimensional variable y = Qx, where Q is 
an orthonormal embedding matrix of shape N × n (n ≪ N)143 (see the 
figure, part b). The dynamics of y are then described by a linear 
dynamical system:

=y Jy, (2)

with the low-rank connectivity matrix J = QAQT of size N × N144. The 
dynamics of this high-dimensional network are confined to the low-
dimensional subspace spanned by the columns of Q and follow Eq. (1)  
within this subspace (see the figure, part c). From this perspective, the 

low-dimensional dynamical system is latent in the high-dimensional 
network y, with dynamics described by latent variables x. The activity  
of the node xi in the low-dimensional circuit maps to a high-dimensional 
activity pattern aligned with the vector q(i), where q(i) is the ith column  
of Q (see the figure, part d). Moreover, writing J as a sum of rank-one 
terms (Box 2):

J A q q , (3)ij ij i j
T

( ) ( )∑=

we see that an edge from node j to node i in the latent circuit maps to 
the outer product q qi j

T
( ) ( ) in the connectivity of the high-dimensional 

network (see the figure, part e). In this way, node j driving node i in the 
latent circuit corresponds to the activity along q( j) driving the activity 
along q(i) via low-rank connectivity124.

Recent theoretical work suggests that low-dimensional dynamics 
can arise from low-rank connectivity in nonlinear RNNs120–122,124,139. 
Under what conditions low-dimensional manifolds arise from low-
dimensional connectivity in nonlinear recurrent networks is an open 
question. Finding such cases will enable validation of distributed 
circuit mechanisms via perturbations124.
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model should not be able to adequately account for the task-related 
dynamics of the large system. However, if the dynamics of the large sys-
tem are accurately predicted by the low-dimensional circuit model, then 
this would suggest that the low-dimensional circuit mechanism may 
be latent in the high-dimensional system. Applied to RNNs optimized 
to perform a cognitive task, this approach revealed a low-dimensional 
circuit structure in these networks, which was validated by patterned 
perturbations of the RNN activity and connectivity124. Future work is 
needed to determine under what conditions such low-dimensional 
connectivity underlies the manifold structure in heterogeneous neural 
responses.

This latent circuit approach is similar to methods which fit neural 
responses with latent linear dynamical systems125,126 but incorporates 
a biologically plausible nonlinearity and task-relevant inputs and out-
puts, and therefore provides an interpretable model of the dynamics 
supporting cognitive task execution. Other approaches estimate full 
high-dimensional RNN connectivity by fitting RNN models to neural 
response data127–129. However, the full high-dimensional connectivity 
is not uniquely constrained by low-dimensional neural trajectories 
and is not easily interpretable89 (Box 2). By contrast, the latent circuit 
approach infers only the low-dimensional connectivity structure gen-
erating task-related dynamics and can be sufficiently constrained by 
low-dimensional neural responses. The latent circuit framework also 
provides a conceptual advance over other methods for fitting neural 
circuit models to neural response data130–132 by introducing the idea 
that circuit mechanisms may be distributed across heterogeneous 
neural populations.

Demixed representations versus circuit mechanisms. Identifying 
task manifolds from neural response data requires dimensionality 
reduction to project high-dimensional activity onto a low-dimensional  
subspace. The resulting low-dimensional representations are not 
unique and depend on the choice of a dimensionality reduction 
method. Intuition tells us that there are an infinite number of ways to 
project high-dimensional data onto a low-dimensional subspace, and 
each projection yields a distinct view of the data manifold. For example, 
principal component analysis looks for the projections that account 
for the most variance in the response data, irrespective of whether this 
variance is related to the task execution. By contrast, targeted dimen-
sionality reduction methods aim to identify task-related dimensions 
in neural population activity, usually by searching for pure (demixed) 
representations of task variables30,111,113,114. Demixing approaches find 
directions in the neural population state space that correlate with each 
task variable, so that representations of task variables do not interact 
and are demixed in orthogonal dimensions30,111,113,114. The objective of 
demixing task variables contrasts with the mechanistic perspective 
provided by neural circuit models, in which nodes representing task 
variables interact via recurrent connectivity. These interactions are 
crucial as they implement the computations necessary to solve the 
task. Thus, demixing approaches and dimensionality reduction incor-
porating mechanistic constraints can infer different task manifolds 
from the same neural responses. Indeed, dimensionality reduction 
based on regression and the latent circuit model approach yielded 
contradictory conclusions about the representations of irrelevant 
stimuli in RNN models of context-dependent decision-making, but 
only the representations identified by the latent circuit model were 
validated using causal perturbations124. These results thus highlight the 
importance of interpreting neural representations within the context 
of circuit mechanisms.

Outlook for mixed selectivity circuits
The recent theoretical work described above suggests that the organi-
zation of heterogeneous neural responses on a manifold arises from a 
low-dimensional connectivity structure in the circuit89,120,122,124. These the-
oretical insights open new possibilities for testing the circuit–manifold  
correspondence in future experiments. In particular, the use of latent 
circuit inference from neural activity data can generate specific mecha-
nistic hypotheses about how neurons interact to produce behaviour. 
Experiments can test these causal relationships by validating the 
behavioural effects of patterned perturbations of neural activity and 
connectivity predicted by the latent circuit model. Patterned activity 
perturbations in behaving animals are becoming increasingly more 
feasible with advances in optogenetic stimulation133–135. Although pat-
terned connectivity perturbations are still experimentally out of reach, 
neural recordings followed by detailed connectivity reconstructions can 
validate the circuit–manifold relationship predicted by the theory. It is 
likely that the anatomical structure will be more complex than predicted 
by the minimal circuit models and that distinct cell types may play spe-
cific functional roles, as in the Drosophila head direction system. These 
anatomical discoveries will lead to refinements of theoretical models to 
solidify the relationship between neural manifolds and circuits.

Conclusions and perspectives
Our understanding of how cognitive computations emerge from col-
lective dynamics in neural populations has advanced significantly 
over the past decade. Neural manifolds were in the vanguard of many 
breakthroughs that have led to a conceptual shift in focus from the 
single neuron to the neural population136,137. Neural manifolds grace-
fully compress the daunting complexity and heterogeneity of single-
neuron responses to reveal interpretable low-dimensional structure 
on the population level that can often be related to the computational 
scaffold of the behavioural task. The successes in describing neural 
computations as dynamics on low-dimensional manifolds spurred the 
idea that manifolds are the necessary and sufficient building blocks 
to explain cognition40. At its extreme, this view suggests that under-
standing cognitive functions on the level of connectivity and circuits 
is unnecessary and may even be impossible41.

The work we reviewed here supports an alternative view that the 
manifold and circuit approaches to cognition are inseparable. Rep-
resentations of task variables on low-dimensional neural manifolds 
mirror the topological structure of the cognitive task variables and, 
in many cases, manifolds arise from the low-dimensional connectiv-
ity structure in the circuit49,68,89,120,122,124. In navigational systems, the 
regularity of single-neuron responses and simple manifold geometry 
naturally suggest the underlying connectivity structure and form the 
basis for theoretical circuit models50,51. Measurements of the activity 
and connectivity of all neurons in the entire circuit provide a direct 
test of such models and fully confirm the ring attractor model in the 
fly navigational system47. The intuition provided by theoretical mod-
els is crucial for identifying circuit mechanisms from simultaneous 
measurements of activity and connectivity89,90,138. In the mammalian 
neocortex, the diversity of single-neuron responses conceals the link 
to the underlying connectivity. However, the organization of neural 
responses on a low-dimensional manifold can be related to a low-
dimensional connectivity structure that gives rise to the manifold in 
neural activity space120,122,124. This relationship was directly confirmed 
in RNNs124, and future work can test it in biological data.

Similar to the classical circuit models, the neural manifold and 
the circuit mechanism intertwine in systems with distributed mixed 
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selectivity. However, a circuit mechanism in such systems exists not as 
specific connections between pairs of neurons but as a low-dimensional 
connectivity structure that enables one distributed activity pattern 
to influence another120–122,124,139. The activity patterns define the low-
dimensional manifold, and the low-dimensional connectivity structure 
implements causal interactions between different dimensions on this 
manifold.

Why should we seek circuit structure and not satisfy ourselves 
with descriptions of neural computations as dynamics on manifolds? 
Without links to the underlying circuit mechanism, neural manifolds 
provide merely an abstract statistical description of the population 
dynamics. Thus, the dynamics discovered from data are sensitive to 
nuances of the statistical method. Different methods sometimes arrive 
at seemingly contradictory hypotheses without a clear path to falsify 
them. By contrast, a circuit mechanism captures causal interactions 
between neurons and generates testable predictions for perturbation 
experiments, offering an objective way to identify an accurate model 
among plausible circuits. Mechanistic understanding of the neural 
circuits underlying cognition will give us new opportunities to inter-
face with these circuits and treat mental disorders. Therefore, neural 
manifolds are not the end goal but a link between experiments and 
theoretical modelling that is needed to identify the circuit mechanisms 
giving rise to the neural dynamics that drive behaviour.
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