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A B S T R A C T   

The interactions between prefrontal cortex and other areas during working memory have been studied for de-
cades. Here we outline a conceptual framework describing interactions between these areas during working 
memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent 
from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes 
locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the 
representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory 
areas can recover this information via a combination of coherent oscillations and gating of input efficacy based 
on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions 
with sensory areas during working memory, we also discuss the broader implications of this framework for 
flexible communication between brain areas in general.   

The relative contributions of prefrontal and sensory areas to working 
memory (WM) have long been the subject of debate (Emrich et al., 2013; 
Harrison and Tong, 2009; Lara and Wallis, 2015; Pasternak and 
Greenlee, 2005; Sreenivasan et al., 2014). Firing rate changes reflecting 
the content of WM during the delay period of tasks are more robust in 
prefrontal cortex (PFC) (Bruce and Goldberg, 1985; Funahashi et al., 
1989; Fuster and Alexander, 1971; Miller et al., 1996; Rao et al., 1997; 
Romo et al., 1999), and indeed often absent in many earlier sensory 
areas (Chelazzi et al., 1998; Chelazzi et al., 2001; Fuster, 1990; Leavitt 
et al., 2017; Mendoza-Halliday et al., 2014; Zaksas and Pasternak, 
2006); yet the stimulus selectivity of prefrontal neurons seems insuffi-
cient to support the level of detail which can be maintained in visual WM 
(Desimone et al., 1985), and lesions do not always abolish performance 
(Clark et al., 2014; D’Esposito and Postle, 1999; Rushworth et al., 1997). 
These challenges have led to the idea that the information maintained in 
WM needs to be stored in sensory areas, and such information can be 
recruited as needed (Emrich et al., 2013; Postle, 2006; Rose et al., 2016). 
This sensory recruitment theory of WM also faces its own challenges. 
Since the action potentials are the means of communication between 
brain areas, the lack of firing rate changes in sensory cortex raises the 
questions of exactly how WM recruits sensory areas. In light of the recent 
findings in our lab and others, we have developed a framework to 
describe the sequence of events needed for recruitment of sensory areas 

during WM. Briefly, in this framework, WM-driven oscillations in visual 
areas alter spike timing in a way which reflects the stored information. 
This information carried by spike timing is transferred to downstream 
areas through coherent oscillations and oscillation-dependent gating of 
inputs (Fig. 1). This framework was developed primarily to explain 
recent findings during WM, but may also apply to other tasks in which 
sensory areas receive top-down cognitive signals, such as covert 
attention. 

1. A conceptual framework describing oscillation-based 
prefrontal modulation of sensory areas 

First, the proposed framework is described in greater detail; a review 
of the literature supporting the various components of the framework 
will follow. During WM, PFC, and specifically the Frontal Eye Fields 
(FEF), sends a signal reflecting the content of WM to visual areas. Within 
visual areas, this top-down signal drives increased oscillatory activity in 
particular frequency bands, as reflected by power in the local field po-
tential (LFP; #1 in Fig. 1), and as a result changes the timing of spikes 
relative to these oscillations to reflect the content of stored information 
within sensory areas (#2 in Fig. 1). In order for this information encoded 
in spike timing to be conveyed to downstream areas (such as PFC, which 
also receives visual input), they must have an oscillation coherent with 
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the WM-induced oscillation in the visual areas. By gating the efficacy of 
visual input based on the phase of that local oscillation in the receiving 
area, information coded in the timing of visual spikes can be trans-
formed back into a rate code (#3 in Fig. 1). Such phase-dependent 
representation of stored information could account for recruitment of 
sensory areas during WM. Moreover, it can also account for how WM 
facilitates the processing of sensory information matching the content of 
WM: visual neurons more strongly driven by the current visual stimulus 
will spike earlier in the oscillatory cycle. This also means that infor-
mation about incoming visual stimuli is reflected in the timing of spikes 
relative to these oscillations; the implications of this framework for 
mechanisms of attention is also discussed. 

Below, we will review existing evidence consistent with the proposed 
framework: that top-down signals are sent from prefrontal to sensory 
areas, that oscillations in sensory areas facilitate the expression of a 
hidden representation in these areas through the relative timing of 
spikes, that coherent oscillations across areas exist, and that local 
oscillation phase can gate the efficacy of incoming signals. 

2. The functional and anatomical connectivity between 
prefrontal and extrastriate visual cortex 

PFC has reciprocal anatomical connections with most extrastriate 
visual areas (Markov et al., 2014a). The FEF portion of PFC has direct 
projections to multiple extrastriate visual areas, including V4, middle 
temporal (MT), and inferotemporal cortex (Anderson et al., 2011; Bar-
one et al., 2000; Markov et al., 2014a; Markov et al., 2014b; Pouget 
et al., 2009; Stanton et al., 1995; Ungerleider et al., 2008). The con-
nections between FEF and V4 have been studied in the greatest 
anatomical detail. Both the projections from FEF to V4, and the pro-
jections from V4 to FEF, diverge from the stereotypical anatomical 
patterns associated with feedback vs. feedfoward projections (Rockland 
and Pandya, 1979), and are instead described as being of an ‘interme-
diate’ type (Ungerleider et al., 2008). FEF’s projections to V4 arise 
predominantly in the supragranular layers (Barone et al., 2000; Markov 
et al., 2014b; Pouget et al., 2009; Ungerleider et al., 2008), and form 
synapses in all layers of V4 (Anderson et al., 2011; Stanton et al., 1995). 
V4 projections to FEF arise in the supragranular layers (Markov et al., 
2014a; Markov et al., 2014b), and synapse in all layers of FEF (Unger-
leider et al., 2008). Projections from FEF to V4 overwhelmingly synapse 
onto putatively excitatory neurons within V4 (~98% excitatory targets 
vs. 2% inhibitory targets, characterized based on electron microscopy 
(Anderson et al., 2011)). Despite accounting for such a small percentage 
of targets within V4, it is the putatively inhibitory neurons of extrastriate 
cortex that show larger firing rate changes than excitatory neurons 
during WM (Nesse et al., 2021), and are more consistently enhanced by 
attention (Mitchell et al., 2007). It is possible that these changes in 
inhibitory activity result from the small fraction of direct inputs, or that 
they are mediated through a subpopulation of excitatory neurons. 

The information conveyed in FEF’s projections to extrastriate cortex 
has been directly characterized. FEF contains a heterogenous mixture of 
visual, motor, and cognitive signals (Bruce and Goldberg, 1985; Law-
rence et al., 2005; Lowe and Schall, 2018). A more recent study used 
electrical stimulation of V4 while recording from FEF to directly identify 
FEF neurons projecting to V4 and characterize their response properties 
during a classic spatial WM task, the memory-guided saccade task 
(Fig. 2 A) (Merrikhi et al., 2017). Activity reflecting the content of WM, 
rather than visual or motor responses, was the defining characteristic of 
FEF neurons projecting to V4. Thus, extrastriate visual cortex receives a 
top-down signal during the delay period of WM tasks. Although animals 
in this study directly identifying V4-projecting FEF neurons did not 
perform a covert attention task, a separate set of experiments found that 
the same FEF neurons displaying memory-related activity also reflect 
the location of covert attention (Armstrong et al., 2009), suggesting that 
visual areas will also receive top-down input directly from FEF neurons 
during these tasks. Despite receiving this WM signal, the firing rates of 
extrastriate neurons do not directly reflect the content of WM during the 
delay (Fig. 2D) (Bahmani et al., 2018). How this WM signal alters ac-
tivity in visual areas will be reviewed in the following sections. 

On the other side of the reciprocal projections, the efficacy of input 
from V4 to FEF has been shown to be modulated by the content of WM. 
Electrical stimulation of V4 was used to identify FEF neurons receiving 
input from V4, characterize their activity, and to test whether the 
effective strength of that input varied during WM (Noudoost et al., 
2021). Although one might reasonably hypothesize that visual input 
from V4 would primarily target visually responsive neurons within FEF, 
instead it was neurons with a combination of both visual and motor 
activity which were more likely to receive V4 input (Fig. 2B), suggesting 
an important role for incoming V4 information in linking visual stimuli 
to behavior. The efficacy of the same V4 stimulation in driving FEF 
activity was greater when remembering a location corresponding the 
response fields (RFs) of the stimulation and recording sites (Fig. 2E); FEF 
neurons receiving V4 input were also more likely to fire together (within 
a narrow temporal window) when the content of WM matched their RF 
locations (Fig. 2 F). This shows that WM can modulate the strength of 
functional connectivity between areas, possibly by altering the oscilla-
tory coherence between them, as discussed in more detail below. 

3. Top-down signals drive oscillations in sensory areas 

Modulations in oscillatory power (reflected in the LFP) have been 
reported in sensory areas during WM and attention tasks. These modu-
lations of LFP power during cognitive tasks have been reported in a 
variety of frequency bands; although the exact definitions of these fre-
quency bins vary between individual publications, they are generally 
defined around delta (1–4 Hz), theta (5–8 Hz), alpha (8–12 Hz), beta 
(15–30 Hz), and gamma (>30 Hz) frequency ranges. Several studies 
have reported changes in LFP power during WM: in the dorsal stream, 

Fig. 1. A framework describing the role of 
coherent oscillations and spike timing in 
prefrontal-visual interactions during WM. 1) 
WM-related activity in FEF drives both local 
(within FEF) and distant oscillations (in visual 
areas). 2) Within visual areas, the WM-induced 
oscillations alter spike timing, so that the phase 
of spikes reflects the stored information. 
Spiking response of a visual neuron when 
remembering a preferred (black) and non-
preferred (gray) stimulus relative to the local 
oscillation is schematically illustrated. 3) The 
efficacy of visual input sent to FEF is modulated 
by the phase of the FEF oscillation, which is 
coherent with the oscillation in visual areas. 

Thus, V4 spikes arriving at certain oscillatory phases are more likely to evoke spikes in FEF, turning spike timing differences in V4 into rate differences in FEF, 
illustrated schematically by V4 spikes (blue) arriving at various times relative to the FEF oscillation, and evoked FEF spikes (red).   
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Fig. 2. Functional characteristics of the anatomical connections between FEF and extrastriate cortex. A) FEF neurons projecting to V4 are characterized by delay 
period activity. PSTH shows example V4-projecting FEF neuron during a spatial WM task, when remembering the RF location (In, red) or a location in the opposite 
visual hemifield (Out, blue). B) FEF neurons receiving V4 input display both visual and motor activity. PSTH shows example V4-receiving FEF neuron during the 
same spatial WM task. C) Schematic illustrating different neural populations represented by PSTHs (A, B, D). D) Extrastriate neurons show visual but no delay activity 
during a spatial WM task. PSTH shows normalized average activity of 107 MT neurons. E) WM increases the efficacy of V4 input into FEF. The magnitude of FEF 
responses evoked by V4 electrical stimulation is shown for memory In versus memory Out conditions. The histogram in the upper-right shows the distribution of 
differences across sessions. F) WM alters the likelihood of two FEF neurons receiving V4 input firing simultaneously. Mean V4 stimulation evoked spiking activity and 
raster plots for two example FEF neurons (left), and the probability of joint spiking (right) for memory In (red) and memory Out (blue). Figures from Merrikhi et al. 
(2017) (A), Noudoost et al. (2021) (B, E, F), and Bahmani et al. (2018) (D). 

Fig. 3. Key experimental evidence supporting main aspects of the proposed framework. A) Changes in spike timing in visual area MT during WM. Middle: When 
remembering a location matching the RF of the recording site in MT, spikes are more strongly locked to alpha-beta oscillations. Plot shows SPL across frequencies 
during the delay period of a WM task, when remembering the RF location (In, red) or a location in the opposite visual hemifield (Out, blue). Inset shows scatter plot 
and histogram for SPL in the alpha-beta band, In vs. Out. Right: Information about the visual probe location encoded by the phase of spiking relative to the alpha-beta 
oscillation (measured as mutual information, MI), when remembering the RF location vs. during fixation. Histogram shows distribution of differences. B) Oscillatory 
coherence between prefrontal and visual cortex predicts WM performance. Left: schematic of simultaneous recordings from FEF and TE. Middle: Beta-band oscillatory 
coherence between areas (measured by phase-phase locking, PPL) during an object WM task, over time for correct (red) and wrong (blue) trials. Right: Difference in 
PPL between areas (Correct-Wrong), as a function of time and frequency. C) Modulation of sensory input efficacy by gamma phase, for an example V4 recording (top) 
and the population (bottom). Top left: Each gray line represents one trial, indicating the estimated gamma LFP phase just prior to input arrival in V4. Trials were 
grouped into six phase bins (colored segments), and the 75 trials closest to the center of each bin were used in subsequent analysis. Top right: Multiplicative response 
component of the V4 MUA of an example recording site as a function of gamma LFP phase. Blue curve shows a cosine fit; modulation depth (MD) is the difference 
between cosine peak and trough. Bottom left: Modulation depth for MUA at 94 V4 sites across two animals, as a function of LFP frequency (blue, ± SE). Red shows 
bias estimate. Bars at bottom show regions in which MD is significant (black p < 0.05; blue p < 0.01; red p < 0.001). Bottom right: histogram for MD across sites 
(expressed as percentage of pre-input MUA rate) in the gamma range (40–66 Hz, blue) and alpha-beta range (10–14 Hz, red). Dashed lines show medians of each 
distribution. Figures from Bahmani et al. (2018) (A), Rezayat et al. (2021) (B), and adapted with permission from Ni et al. (2016) (C). 
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alpha-beta power was elevated in MT during WM maintenance (Bah-
mani et al., 2018; Mendoza-Halliday et al., 2014). In the ventral stream, 
the inferotemporal (IT) cortex also had elevated alpha-beta power 
(Rezayat et al., 2021) during WM, while enhanced theta-band activity 
has been reported in area V4 (Lee et al., 2005). Similarly, human EEG 
recordings have also reported changes in oscillatory power during WM 
(Gevins et al., 1997; Howard et al., 2003; Mendoza-Halliday et al., 
2014). Several hypotheses exist regarding the functional significance of 
and differences between various oscillatory frequencies (Bastos et al., 
2018; Benchenane et al., 2011; Engel and Fries, 2010; Miller et al., 
2018). One recent set of findings during covert attention tasks suggests 
that the gamma band is primarily associated with the feedforward flow 
of information, while the alpha-beta bands are associated with 
top-down, feedback signals (Bastos André et al., 2015a; Buffalo et al., 
2011; Michalareas et al., 2016; van Kerkoerle et al., 2014a). Oscillatory 
activity in prefrontal and parietal areas is also modulated during WM 
and attention tasks (Kornblith et al., 2016; Lara and Wallis, 2014; 
Lundqvist et al., 2016). These stronger oscillations induced by WM may 
then exert greater control over the timing of spikes relative to the phase 
of the oscillations. 

4. Top-down signals alter spike timing relative to oscillations in 
sensory areas 

In addition to changes in oscillatory power during cognitive pro-
cessing, the timing of spiking relative to these oscillations is also 
modulated by top-down WM and attention signals. The relationship 
between the time of spikes and LFP oscillations has typically been 
quantified using either spike-field coherence or spike-phase locking, 
both of which measure how reliably spikes occur at a particular phase of 
ongoing LFP oscillations. Multiple studies have reported changes in the 
relative timing of spikes in extrastriate cortex during the delay period of 
WM tasks, even in the absence of changes in overall firing rate. During 
WM, the timing of spikes relative to the theta band of V4 oscillations 
reflected the content of object WM (Lee et al., 2005). In MT, spikes of 
neurons with RFs matching the remembered location were more 
strongly phase-locked to local alpha-beta oscillations ((Bahmani et al., 
2018); Fig. 3 A); this change in spike timing relative to oscillations 
occurred despite the lack of change in average firing rate (Fig. 2D). 
During covert attention tasks, spikes in V4 are more strongly locked to 
gamma-band oscillations (Fries et al., 2001; Gregoriou et al., 2014). 
Along the ventral visual stream, attention drives changes in spike-field 
coherence which vary across the cortical layers; superficial layers see 
coherence increase in the gamma-band, while deeper cortical layers of 
V1, V2, and V4 saw increased coherence in the alpha frequency range 
(Buffalo et al., 2011). Spike-field coherence in the gamma band in V4 
also correlated with faster reaction times on an attention task 
(Womelsdorf et al., 2006). This change in spike timing based on the 
content of WM, or the location of covert attention, in turn means that 
spike timing carries information about these variables. 

Bahmani and colleagues took this analysis of changes in spike timing 
during WM one step further, and looked at the responses of neurons to 
visual probes appearing during the delay period of the WM task (Bah-
mani et al., 2018). The alpha-beta phase of MT spiking in response to 
visual probes carried information about the location of the visual 
probe—i.e., there was phase coding of visual information. This phase 
coding of probe location was stronger during the memory period than 
during fixation (Fig. 3 A), and stronger when the remembered location 
was close to both the neuron’s RF and the probe location. Although the 
evidence for modulation of such phase coding of sensory information by 
cognitive tasks remains limited, the existence of phase coding of sensory 
information has been previously reported in both visual (Montemurro 
et al., 2008) and auditory (Kayser et al., 2009) cortex. Thus, under the 
top-down influence of WM, the timing of spikes relative to WM-driven 
local oscillations could carry visual information as well as stored 
information. 

Thus, there is evidence that the timing of spikes relative to LFP os-
cillations in visual areas carries both stored information and additional 
sensory information during WM. How could this information be trans-
mitted to downstream areas, when the LFP signal itself is not conveyed 
by projecting axons? This information encoded by relative spike timing 
could be transformed back into a rate code in the downstream area if 
that downstream area 1) has a coherent oscillation with the sending area 
and 2) gates the efficacy of input based on the phase of the local oscil-
lation. The next section reviews the evidence for both of these points. 
Many of these studies focus on the gamma frequency range, and this idea 
is often discussed as part of communication through coherence theory 
(Bastos et al., 2015b; Fries, 2005; Fries, 2015). 

5. Coherence of oscillations between brain areas 

Oscillations can become synchronized, or coherent, across brain 
areas, and the strength of this coherence can be modulated by a variety 
of factors. The simple onset of a visual stimulus is sufficient to induce 
synchronized gamma-band oscillations across multiple visual cortical 
areas (Brunet et al., 2014; Jia et al., 2013; Roberts et al., 2013). 
Considerable evidence also shows that oscillations can be flexibly syn-
chronized across areas, particularly during cognitive tasks such as WM 
and attention; such dynamic modulation of inter-areal coherence could 
then be used to flexibly alter functional connectivity based on task de-
mands. During WM, oscillatory coherence has been reported between 
prefrontal and visual areas in the theta-alpha band (Daume et al., 2017; 
Liebe et al., 2012) and the alpha-beta band (Mendoza-Halliday et al., 
2014; Rezayat et al., 2021), between prefrontal and parietal areas in the 
beta band (Antzoulatos and Miller, 2016; Dotson et al., 2014; Salazar 
et al., 2012), between parietal and MT cortex in the alpha-beta band 
(Saalmann et al., 2007), and between PFC and the hippocampus in the 
alpha-beta band (Brincat and Miller, 2015). These inter-areal coherence 
measures are generally better predictors of WM performance than 
single-area spiking or LFP activity (Fig. 3B, and see (Rezayat et al., 2022) 
for review). During covert visual attention, at sites representing the 
attended stimulus or location, there is selective gamma-band coherence 
between FEF and V4 (Gregoriou Georgia et al., 2009), and between V1 
and V4 (Bosman Conrado et al., 2012; Grothe et al., 2012), the latter of 
which predicts subsequent reaction times (Rohenkohl et al., 2018). An 
electrocorticography (subdural LFP recording) study from 28 areas 
simultaneously during an attention task revealed synchronization be-
tween areas in the theta, beta, and gamma bands (Bastos André et al., 
2015a); combining these recordings with granger causality analysis and 
an anatomical measure of hierarchical level within the visual system led 
to the conclusion that inter-areal gamma synchrony is associated with 
feedforward processing, while beta frequency synchrony facilitates 
feedback signals. Consistent with this framework, prefrontal and pari-
etal cortex synchronize at different frequencies for bottom-up vs. 
top-down attentional tasks (Buschman and Miller, 2007). Numerous 
human EEG and MEG studies likewise show flexible synchronization 
across brain areas depending on task demands (reviewed in (Fell and 
Axmacher, 2011)). 

Indeed, the result of this combination of changes in spike timing 
relative to oscillations within an area and coherence of oscillations be-
tween areas can also be seen in the resulting changes in spike timing in 
one area relative to oscillations in a second area. Phase-locking between 
spikes in visual areas and oscillations in PFC have been reported during 
WM in multiple studies: between IT and FEF in the beta band (Rezayat 
et al., 2021), and between V4 and lateral PFC in the theta band (Liebe 
et al., 2012). There is also spike-phase coherence in the opposite di-
rection, between lateral PFC spikes and alpha-beta oscillations in MT 
(Mendoza-Halliday et al., 2014). This inter-area spike phase locking 
often predicts task performance (Mendoza-Halliday et al., 2014; Rezayat 
et al., 2021; Verhoef et al., 2011). Changes in spike-phase coherence 
across areas have also been reported during covert attention (Gregoriou 
et al., 2012). Such changes in the timing of spikes relative to oscillations 
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in a connected area mean that, if input efficacy is gated by local oscil-
latory phase in the receiving area, the strength of functional connectivity 
between the regions can be modulated; the next section will review the 
evidence that such oscillation-based gating of inputs does occur. 

6. Gating of input efficacy by local oscillatory phase 

Several results provide indirect evidence that input efficacy might 
fluctuate with local oscillatory phase. For example, in the visual system 
such changes in input efficacy with phase would be expected to result in 
visual information which likewise fluctuates in magnitude as a function 
of local oscillatory phase. This dependence of visual information on 
oscillatory phase has been reported in the gamma band in V1 
(Womelsdorf et al., 2012), and in the alpha-beta band in MT (Bahmani 
et al., 2018). 

Paired recording data from Womelsdorf and colleagues provided 
early evidence that interactions between individual recording sites 
within or between visual areas may depend on their relative oscillation 
phase (Womelsdorf et al., 2007). They showed that the power correla-
tion between sites varied based on the naturally occurring variations in 
the gamma-band phase offset between sites (defined relative to the 
average phase offset for each pair of sites); this was true across multiple 
datasets both within individual visual areas (cat area 17, monkey area 
V1 or V4), and between areas (areas 18 and 21 in cat). Optimal phase 
relationships preceded power correlations by 5 ms on average across all 
four datasets, suggesting a causal influence of phase offset on power 
correlation between sites, rather than a common factor causing both. 
These correlative data offer evidence that the strength of neuronal in-
teractions between sites, as reflected by the power correlation, depend 
upon the phase relationship of their gamma oscillations; the authors 
hypothesize that this dependence is due to oscillation phase modulating 
the efficacy of synaptic input. 

One of the more direct tests of this idea was conducted by Cardin and 
colleagues, using cell-type specific optogenetic stimulation in the barrel 
cortex of rodents (Cardin et al., 2009). They showed that optogenetic 
photostimulation of parvalbumin interneurons enabled them to specif-
ically boost gamma-band LFP oscillations in barrel cortex. The efficacy 
of sensory input (vibrissa deflections) then depended on the timing of 
this input relative to the phase of the induced gamma oscillation. This is 
compelling evidence for oscillation-based gating of input efficacy; 
however, it was only shown for the artificially induced, rather than 
naturally occurring, LFP oscillations. Subsequent experiments also 
showed that behavioral detection of low-salience tactile stimuli depen-
ded on the timing of the stimulus relative to the phase of either evoked 
or endogenous gamma oscillations in barrel cortex (Siegle et al., 2014). 

Similar results were reported in monkey V4 by Ni and colleagues (Ni 
et al., 2016). In this case, gamma oscillations were driven by the pres-
ence of a visual stimulus, while monkeys performed a change detection 
task. Sensitivity to visual input was measured by spiking responses to the 
change in the stimulus. They found that the magnitude of the 
visually-evoked response varied according to the oscillation phase at 
which visual input arrived in V4—this was true for both the gamma and 
alpha-beta frequency oscillations (Fig. 3 C). Only the gamma band 
phase, however, was significantly predictive of the animal’s reaction 
time, and the same gamma phase corresponded with both the greatest 
visual response and the lowest reaction times. Because V1 spiking 
relative to its own gamma oscillation is likely co-varying with the 
coherent V4 gamma oscillation (Bosman Conrado et al., 2012; Grothe 
et al., 2012), this phase-dependent V4 visual response cannot be defin-
itively attributed to changes in sensitivity of neurons within V4. To 
address this, Ni and colleagues turned to experiments using 
optogenetically-induced gamma oscillations in anesthetized cats, in area 
21a (the homologue of V4). This optogenetic manipulation increased 
gamma power in area 21a but not in earlier visual area 17. The 
magnitude of area 21a visual responses again varied with local gamma 
phase, and by approximately the same magnitude as in the monkey V4 

dataset. Together, these results strongly suggest that the phase of local 
gamma oscillations can modulate the gain of synaptic inputs to an area. 

For gamma band oscillations, the circuit-level mechanisms which 
generate the oscillation, and by which the local oscillation phase could 
modulate sensitivity to synaptic input, have been extensively studied in 
systems ranging from rodent hippocampal slices to the cortex of pri-
mates performing covert attention tasks. The overall picture is one in 
which there is a narrow gamma phase window in which excitatory in-
puts to pyramidal neurons will be most effective, after which local 
inhibitory neurons are strongly activated, making pyramidal neurons 
less likely to fire (Atallah and Scanziani, 2009; Burchell et al., 1998; 
Buzsáki and Wang, 2012; Csicsvari et al., 2003; Haider et al., 2006; 
Hasenstaub et al., 2005; Salkoff et al., 2015; Vida et al., 2006; Vinck 
et al., 2013). Multiple computational modelling studies demonstrate 
that gamma synchronization can alter effective connectivity between 
sites based on the timing of spike arrival (Börgers and Kopell, 2008; 
Buehlmann and Deco, 2010; Knoblich et al., 2010; Palmigiano et al., 
2017). Additionally, increases in gamma power within one area are also 
associated with greater synchronization between action potentials in the 
neurons providing input to a downstream area, increasing their ability to 
drive downstream neurons (Azouz and Gray, 2008; Jia et al., 2013; 
Zandvakili and Kohn, 2015); this synchronization of inputs is a distinct 
mechanism from oscillation phase-based changes in the sensitivity of the 
receiving neurons, although since changes in gamma synchronization 
within and between areas often occur in concert (e.g., (Jia et al., 2013)), 
both likely contribute to increased functional connectivity in many 
scenarios. Circuit mechanisms generating alpha-beta oscillations are 
comparatively less well-studied, but may also involve rhythmic local 
inhibitory activity (Jensen et al., 2005; Kopell et al., 2011; Lee et al., 
2013; Nesse et al., 2021), with potentially analogous gating of sensi-
tivity to excitatory inputs as a function of oscillatory phase. 

We have reviewed evidence consistent with a proposed framework of 
sensory recruitment during WM, in which WM-driven oscillations in 
sensory areas enable spike timing relative to these oscillations to carry a 
‘hidden’ representation of stored information. This phase-coded infor-
mation is transmitted to downstream areas through a combination of a 
coherent oscillation and oscillation-dependent gating of input efficacy. 
Although the focus is on WM, this mechanism for controlling commu-
nication between areas could apply during many cognitive tasks in 
which sensory processing and behavior are modulated based on top- 
down signals such as context, task rules, or reward associations. The 
combination of changes in spike timing, oscillatory coherence, and 
oscillation-dependent gating of inputs could be a general mechanism to 
enable rapid, flexible changes in functional connectivity across regions, 
allowing dynamic changes in the routing of signals based on rapidly 
changing circumstances. 

7. Implications of the proposed framework for communication 
between brain areas 

In this framework, the role of top-down induced oscillations is to 
control the timing of action potentials relative to these oscillations in the 
recruited area. WM representations are ‘hidden’ in sensory areas, in that 
there is no change in firing rate based on the content of WM (Chelazzi 
et al., 1998; Chelazzi et al., 2001; Fuster, 1990; Leavitt et al., 2017; 
Mendoza-Halliday et al., 2014; Zaksas and Pasternak, 2006); there is, 
however, modulation of the oscillations in these areas, which will in turn 
facilitate the generation of action potentials at particular times, 
expressing the hidden representations. The timing of each individual 
spike relative to the reference oscillation will carry information about 
the stored representation. 

pAs a general criticism to any phase code theory, the proposed 
framework must also address the issue of how the oscillatory code can be 
transmitted from one brain area to another. Oscillatory activity reflects 
the summation of many subthreshold synaptic interactions in the nearby 
neuronal population; these oscillations, unlike spiking activity, are not 
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directly transmitted from one brain area to another. As a solution to this 
issue, based on the literature reviewed in the previous section, in this 
framework, during times of phase-coded communication, the receiving 
area has a copy of the relevant oscillation in the sending area (i.e., an 
oscillation of the same frequency which is coherent, or phase-locked, 
with that in the sending area). In this mechanism, the issue of oscilla-
tions not being transmissible between locations is solved by the two 
communicating areas already oscillating in a synchronized manner, such 
that the information reflected in the phase-coded spikes could be 
directly transmitted. The common source of this coherent oscillatory 
activity is not known, but either a local source (e.g. PFC neurons 
maintaining a persistent activity to generate both local and distant os-
cillations) or another area serving as a hub coordinating both oscilla-
tions (e.g. the pulvinar nucleus of the thalamus as suggested by several 
studies (Saalmann et al., 2012a, Zhou et al., 2016)) could be the answer. 

The proposed framework is built upon three pillars: the presence of a 
common oscillatory source, the oscillatory recruitment of sensory areas 
by prefrontal areas, and information gating between the two areas by 
phase-coding through the shared oscillations. The common oscillatory 
source serves to create and maintain the shared oscillatory reference 
with which communicating neuronal populations can share phase-coded 
information. The oscillatory recruitment of sensory areas shapes spike 
timing in the sensory neuronal populations without directly driving 
elevated spiking activity. This oscillation-dependent activity carries 
phase-coded information, which is then gated by the phase of the 
coherent oscillation in the receiving area. 

8. Implications for theories of WM and attention 

Within this framework, the WM representation is reflected in the 
timing of spikes relative to WM-induced oscillations, rather than 
changes in firing rate, and the role of a feedback signals is to induce a 
common oscillatory frame of reference to enable communication of 
phase-coded information during recruitment. 

The proposed framework supports the idea of a distributed WM 
representation involving sensory areas, rather than a modular perspec-
tive in which memory maintenance occurs solely in higher associative 
areas. Under the assumption that the neural representation must involve 
spiking activity, the absence of persistent activity in sensory areas has 
often been interpreted as strong evidence against a distributed theory of 
WM (Leavitt et al., 2017); however, under the proposed framework, the 
lack of persistent activity does not mean that an area is not being 
recruited. (There is also psychophysical evidence against mnemonic 
information being represented in the exact same way as sensory signals 
(e.g., (Harrison and Bays, 2018)); however, involvement of sensory 
areas does not mean that sensory and memory representations are 
identical—see point 4 of ‘Challenges’ section.) The Noudoost lab has 
directly measured changes in the timing of spikes in MT (Bahmani et al., 
2018) which reflect the content of WM, in the absence of firing rate 
changes. These subthreshold modulations may explain why the content 
of WM can be decoded using fMRI from many visual areas which do not 
exhibit delay activity in extracellular neurophysiological recordings 
(Christophel et al., 2012; Ester et al., 2009; Harrison and Tong, 2009; 
Serences et al., 2009). These changes in spike timing in earlier visual 
areas could also contribute to the delay period activity which emerges 
later in the visual hierarchy (e.g., in IT (Chelazzi et al., 1993) and MST 
(Mendoza-Halliday et al., 2014)), through the same type of changes in 
input efficacy demonstrated for V4 and FEF (Noudoost et al., 2021). 
Interestingly, inter-areal coherence is generally a better predictor of WM 
performance than firing rate (reviewed in (Rezayat et al., 2022)); 
however, the necessity of these WM-driven changes (either oscillatory 
changes or delay activity) in various visual areas for successful WM 
performance has yet to be causally tested, an important step in con-
firming the proposed framework. 

The proposed framework also has potential implications for atten-
tion. Attention and WM are closely related (Knudsen, 2007). 

Psychophysical studies indicate that the two are naturally tightly linked, 
with attention both determining entry into WM and also being drawn to 
stimuli matching the content of WM (Awh et al., 2000; Awh et al., 2006; 
Olivers et al., 2011; Postle et al., 2004; Schmidt et al., 2002). In the 
presence of visual stimuli, the visual response is enhanced when the 
stimulus appears at the location held in WM (Merrikhi et al., 2017). The 
framework described here, in which the content of WM biases the effi-
cacy with which incoming signals are passed to downstream areas 
(Noudoost et al., 2021), could also be described as a mechanism of 
attentional modulation, where changes in efficacy of input have also 
been reported (Briggs et al., 2013). As previously mentioned, changes in 
inter-areal coherence have also been reported during attention (Bastos 
André et al., 2015a; Bosman Conrado et al., 2012; Gregoriou Georgia 
et al., 2009; Grothe et al., 2012; Rohenkohl et al., 2018). Furthermore, 
changes in spike timing relative to oscillations, in the absence of rate 
changes, have also been reported to correlate with performance on an 
attention task (Fiebelkorn and Kastner, 2021), consistent with the pro-
posed recruitment framework. Alternatively, some of these similarities 
between attention and WM effects may exist because WM typically also 
causes the deployment of attention; given the tight natural association 
between attention and WM, one cannot definitively attribute neuro-
physiological changes observed during WM tasks to that process alone, 
rather than the naturally linked deployment of attention. However, 
there is evidence that the neural substrates of attention and WM can be 
dissociated under certain circumstances. With training, it is possible to 
separate the focus of attention and WM using a dual-task structure 
(Lebedev et al., 2004; Messinger et al., 2009); using this dual-task 
paradigm, separate population-level representations of the attended 
and remembered locations can be found in the dorsolateral prefrontal 
cortex (dlPFC), with approximately a third of spatially selective dlPFC 
neurons ‘multitasking’ and showing selectivity for both attention and 
memory. A dissociation between sensory and mnemonic representations 
is also reported in this area (Mendoza-Halliday and Martinez-Trujillo, 
2017). Such dissociations may form the basis for future experiments 
which more precisely attribute changes seen during WM to purely WM 
vs. attention-related processes. Thus, although the neural mechanisms of 
attention and WM are not entirely identical but difficult to fully disso-
ciate, we propose that the oscillatory recruitment mechanism discussed 
here is one potential point of overlap between them. 

9. Challenges and future directions 

The communication through coherence theory (Bastos et al., 2015b; 
Fries, 2005; Fries, 2015) describes how coordinated oscillations can 
flexibly alter the efficacy of communication between brain areas. The 
“recruitment through coherence” model outlined in this paper specif-
ically suggests that WM creates a shared oscillatory frame of reference to 
recruit sensory areas. Moreover, by incorporating the role of a phase 
code, it claims that the role of oscillations is to express the maintained 
representation in the differential timing of spikes. There remain several 
challenges to the feasibility of this model, some of which are specific to 
the phase coding aspect and some of which are shared with communi-
cation through coherence theory. This section highlights these chal-
lenges and suggests some avenues to address them.  

1) Robustness: Although phase coding of information has been reported 
in many contexts (Kamiński et al., 2020; Kayser et al., 2009; Lee 
et al., 2005; Montemurro et al., 2008; O’Keefe and Burgess, 2005; 
Siegel et al., 2009; Turesson et al., 2012; Zarei et al., 2022), the 
magnitude of phase information overall is smaller than what is ex-
pected of the main neural code for sensory representation. However, 
a robust readout of a phase code requires identifying the specific 
oscillatory frame of reference. One experimental barrier to accu-
rately measuring phase coding is that the recorded LFP will reflect a 
combination of multiple oscillatory and aperiodic signals. For 
example, if multiple areas recruiting a single area induce separate 
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oscillations to create their own channel of communication, the 
interference between these multiple oscillations may obscure an 
experimenter’s ability to read out the phase code. A critical verifi-
cation of the proposed model will be to show that isolating the 
specific oscillatory frame of reference (for example by decomposing 
the LFP signal using source separation techniques (Cohen, 2022, 
Makarov et al., 2010)) drastically improves the readout of phase 
coded information. In addition, it is important that measures of 
oscillatory coherence, power, and spike-phase locking check for 
confounding factors such as changes in oscillatory frequency (Hae-
gens et al., 2014), contributions of aperiodic activity, and signal to 
noise ratio, and need to use methods that work with non-uniform 
distributions; fortunately awareness of these potential issues is 
increasing, and novel analytical approaches for addressing them are 
being developed (Cohen, 2017; Cohen, 2021; Donoghue et al., 2022; 
Keil et al., 2022).  

2) Utility: An unresolved issue with phase coding has always been an 
explanation of how the information in this code can be utilized by 
another brain area. The timing of spikes relative to a specific local 
oscillation loses its meaning arriving in the next area if the appro-
priate oscillatory frame of reference is missing. In the proposed 
model, the role of coherent oscillations in the sending and receiving 
areas, generated by a common source (see point 5 below), is expected 
to resolve the issue of utility. It also requires that any changes in the 
exact frequency of oscillations (as have been reported for gamma 
oscillations, see (Ray and Maunsell, 2010)) are shared across areas, 
which has yet to be tested. In the case of spatial WM, in the proposed 
framework a spatially selective spiking activity straddling the period 
of WM maintenance, namely FEF persistent activity (Armstrong 
et al., 2009; Lawrence et al., 2005; Merrikhi et al., 2017; Sommer and 
Wurtz, 2001), drives both the local and distant oscillations. How-
ever, a causal manipulation of WM-related FEF activity, e.g. using 
pharmacological drugs known to alter PFC persistent activity (Nou-
doost and Moore, 2011; Williams and Goldman-Rakic, 1995), and 
assessing its impact on generating coherent FEF-V4 oscillations is 
needed to test this theory.  

3) The primacy of oscillations: The proposed model suggests that the 
benefits of WM for sensory processing and maintenance are exerted 
via induced oscillations. A comprehensive model needs to take a 
stance regarding the relationship between these oscillatory changes 
and the non-oscillatory signatures of WM. As discussed earlier, the 
proposed model can be potentially applied to visuospatial attention 
as well. In the case of attention, there is as yet no unifying theory to 
account for the long list of neural signatures (surveyed e.g. in Table 1 
of (Noudoost et al., 2010)). Importantly, many of these attentional 
signatures are also observed during WM; e.g. WM not only induces 
oscillations in visual areas, it changes the Fano factor (Merrikhi et al., 
2017), RF profile (Merrikhi et al., 2017) and correlated variability of 
neurons (Merrikhi et al., 2018). Are these various signatures all 
byproducts of the induced oscillatory change, or are there separate 
oscillatory and non-oscillatory mechanisms in place to bring about 
the benefits of attention and WM for sensory processing? Answering 
this question may require manipulations of neural activity, to 
determine whether various signatures can be dissociated, along with 
computational modeling to understand the mechanisms linking 
various changes. 

4) Interference between stored information and incoming sensory in-
formation: One important outstanding question is how maintained 
information and incoming sensory information can be simulta-
neously represented in sensory areas, without interfering with one 
another. This question is so far relatively unexplored, as almost all 
WM tasks used in neurophysiological recordings involve no sensory 
stimuli during the delay period (only occasionally with qualitatively 
distinct distractors (Suzuki and Gottlieb, 2013)). Indeed, even the 
question of how multiple visual stimuli within a single neuron’s 
receptive field are represented is an ongoing topic of research (Jun 

et al., 2022). There is behavioral evidence that distracting visual 
stimuli can indeed interfere with memory maintenance (Hallenbeck 
et al., 2021); however, clearly both WM representations and sensory 
representations can coexist. How might the brain differentiate be-
tween the stored and sensory information? Several possibilities exist: 
1) Oscillatory coherence in different frequencies, and timing of 
spikes relative to these oscillations, could guide the flow of stored vs. 
incoming information—for example, it has been suggested that 
gamma is used in feedforward processing, while alpha/beta reflects 
feedback signals (Bastos André et al., 2015a; Michalareas et al., 
2016; Popov et al., 2017; van Kerkoerle et al., 2014b). 2) Phase and 
rate coding might carry different types of information; indeed, this 
type of dual coding for different variables has been reported in the 
hippocampus for speed and location (Huxter et al., 2003). 3) WM 
may recruit from a broader neural pool in visual areas- for example, 
object or feature WM may recruit neurons with a variety of RF lo-
cations (as suggested by fMRI decoding of stimuli from primary vi-
sual cortex (Ester et al., 2009), and spatial WM may recruit neurons 
with various feature selectivities, compared to those driven by an 
actual visual stimulus. This in turn could represent remembered 
stimuli in a different population subspace than sensory input (Ruff 
et al., 2018; Semedo et al., 2022; Semedo et al., 2019; Srinath et al., 
2021). Further research will be needed to investigate these or other 
possible mechanisms. 

5) Common source. The framework posits a common source for oscil-
lations in the two areas, which seems necessary to ensure their 
coherence; more specifically, it proposes that persistent memory- 
related activity in FEF drives oscillations in both FEF and V4. This 
suggestion is as yet unproven, and can be tested with pharmaco-
logical or optogenetic manipulations of FEF activity. It is also 
possible that oscillations are coordinated by a third area; indeed, 
evidence for a role of the pulvinar nucleus of the thalamus in coor-
dinating oscillations across cortical areas has been reported during 
attention (Fiebelkorn et al., 2019; Saalmann et al., 2012b). 

6) Storage of multiple items. Previous findings show that within pre-
frontal cortex, multiple items held in WM are coded at different 
phases of gamma oscillations (Siegel et al., 2009). One possibility is 
that the same phase dependence exists in visual areas, either relative 
to the alpha-beta oscillation or perhaps to nested gamma cycles. The 
number of items held in WM may also alter the frequency of oscil-
lations, as has been previously reported (Haegens et al., 2014). 
Further experiments will be needed to verify these phenomena, along 
with a more precise understanding of the neural circuits generating 
these oscillations to explain the change in frequency. 

In conclusion, this framework provides a mechanistic explanation for 
multiple phenomena observed during visual WM, and points towards 
several avenues for further research. From where does the common 
oscillation in prefrontal and visual areas originate? To what extent is 
communication between other brain areas similarly modulated during 
WM? Does the same mechanism modulate the strength of functional 
connectivity between areas during covert attention? How does the brain 
differentiate between stored and sensory representations? How are 
multiple items stored? To what degree is the recruitment of various 
areas across the visual hierarchy necessary for successful WM perfor-
mance? These questions remain important points for future 
investigation. 
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Buzsáki, G., Wang, X.J., 2012. Mechanisms of gamma oscillations. Annu Rev. Neurosci. 
35, 203–225. 

Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., et al., 2009. Driving fast- 
spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 
663–667. 

Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R., 1993. A neural basis for visual search 
in inferior temporal cortex. Nature 363, 345–347. 

Chelazzi, L., Duncan, J., Miller, E.K., Desimone, R., 1998. Responses of neurons in 
inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80, 
2918–2940. 

Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R., 2001. Responses of neurons in 
macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772. 

Christophel, T.B., Hebart, M.N., Haynes, J.D., 2012. Decoding the contents of visual 
short-term memory from human visual and parietal cortex. J. Neurosci. 32, 
12983–12989. 

Clark, K.L., Noudoost, B., Moore, T., 2014. Persistent spatial information in the FEF 
during object-based short-term memory does not contribute to task performance. 
J. Cogn. Neurosci. 26, 1292–1299. 

Cohen, M.X., 2017. Multivariate cross-frequency coupling via generalized 
eigendecomposition. Elife 6. 

Cohen, M.X., 2021. A data-driven method to identify frequency boundaries in 
multichannel electrophysiology data. J. Neurosci. Methods 347, 108949. 

Cohen, M.X., 2022. A tutorial on generalized eigendecomposition for denoising, contrast 
enhancement, and dimension reduction in multichannel electrophysiology. 
Neuroimage 247, 118809. 

Csicsvari, J., Jamieson, B., Wise, K.D., Buzsáki, G., 2003. Mechanisms of Gamma 
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