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Abstract 28 Although there is mounting evidence that input from the dorsal visual pathway is crucial for object 29 processes in the ventral pathway, the specific functional contributions of dorsal cortex to these 30 processes remain poorly understood. Here, we hypothesized that dorsal cortex computes the 31 spatial relations among an object’s parts – a processes crucial for forming global shape percepts – 32 and transmits this information to the ventral pathway to support object categorization. Using fMRI 33 with human participants (females and males), we discovered regions in the intraparietal sulcus 34 (IPS) that were selectively involved in computing object-centered part relations. These regions 35 exhibited task-dependent functional and effective connectivity with ventral cortex, and were 36 distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and 37 tools. In a subsequent experiment, we found that the multivariate response of posterior IPS, defined 38 on the basis of part-relations, could be used to decode object category at levels comparable to 39 ventral object regions. Moreover, mediation and multivariate effective connectivity analyses further 40 suggested that IPS may account for representations of part relations in the ventral pathway. 41 Together, our results highlight specific contributions of the dorsal visual pathway to object 42 recognition. We suggest that dorsal cortex is a crucial source of input to the ventral pathway and 43 may support the ability to categorize objects on the basis of global shape.  44 

Keywords: dorsal stream, ventral stream, two visual streams, object recognition, shape perception, 45 visual cortex 46   47 
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Significance Statement 48 Humans categorize novel objects rapidly and effortlessly. Such categorization is achieved by 49 representing an object’s global shape structure, that is, the relations among object parts. Yet, 50 despite their importance, it is unclear how part relations are represented neurally. Here, we 51 hypothesized that object-centered part relations may be computed by the dorsal visual pathway, 52 which is typically implicated in visuospatial processing. Using fMRI, we identified regions selective 53 for the part relations in dorsal cortex. We found that these regions can support object 54 categorization, and even mediate representations of part relations in the ventral pathway, the 55 region typically thought to support object categorization. Together, these findings shed light on the 56 broader network of brain regions that support object categorization. 57  58   59 
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Introduction 60 A central organizing principle of the brain is that the visual system is segregated into a ventral 61 visual pathway for recognizing objects and a dorsal visual pathway for locating and interacting with 62 objects (Mishkin et al., 1983; Ungerleider & Haxby, 1994). However, research increasingly shows 63 that the dorsal pathway computes some of the same object properties as the ventral pathway 64 (Farivar, 2009; Freud et al., 2020; Freud et al., 2016), and may even play a functional role in object 65 recognition (Freud et al., 2020; Holler et al., 2019). Despite these findings, the dorsal pathway is 66 rarely included in conceptual or computational models of visual recognition (Gauthier & Tarr, 2016; 67 Zhuang et al., 2021). Indeed, artificial neural network models (ANNs) trained for object recognition 68 are almost exclusively modelled on ventral cortex processes (Blauch et al., 2021; Kubilius et al., 69 2019). One potential reason for this exclusion, is that the specific functional contributions of the 70 dorsal pathway to object recognition are poorly understood. 71 The primary function of the dorsal pathway has long been considered to be the computation of 72 visuospatial  information in the service of coordinating actions (Goodale & Milner, 1992; Mishkin et 73 al., 1983). However, dorsal cortex, particularly the posterior parietal cortex (PPC), also computes 74 object properties relevant for recognition. For instance, many studies find robust sensitivity to 75 shape information in the PPC (Bracci & Op de Beeck, 2016; Freud et al., 2017; Georgieva et al., 76 2008), akin to ventral object regions such as the lateral occipital complex (LOC; Grill-Spector et al., 77 2001; Kourtzi & Kanwisher, 2001). As in LOC, dorsal shape representations are seemingly robust to 78 changes in size and orientation, as well as format (i.e., 3D vs. 2D; Konen & Kastner, 2008; Vaziri-79 Pashkam & Xu, 2019). Object representations in the dorsal pathway also appear to be relatively 80 abstract, such that the multivariate responses in PPC corresponds to perceived semantic similarity 81 among objects, even when controlling for low-level visual properties (Bracci & Op de Beeck, 2016; 82 Jeong & Xu, 2016).  83 Although these studies highlight the similarities between dorsal and ventral pathways, object 84 representations in dorsal cortex are not simply redundant with those in the ventral cortex (Bracci & 85 Op de Beeck, 2016; Freud et al., 2015; Vaziri-Pashkam & Xu, 2019). What, then, are the unique 86 contributions of the dorsal pathway to object recognition? One possibility, consistent with its role 87 in visuospatial processing (Kravitz et al., 2011; Mishkin et al., 1983), is that dorsal cortex computes 88 the spatial relations among an object’s component parts – that is, the object’s topological structure,  89 but not the form of object parts themselves – and then propagates this information to the ventral 90 pathway to support object recognition. 91 Many studies have demonstrated that a description of part relations is crucial for forming invariant 92 ‘global shape’ representations (Biederman, 1987; Hummel, 2000), which may be key for 93 recognizing objects across variations in viewpoint or across category exemplars (Ayzenberg & 94 Lourenco, 2019; Hummel & Stankiewicz, 1996). Indeed, an inability to represent the part relations 95 results in marked deficits in object recognition (Behrmann et al., 2006). Such a representation may 96 be particularly important for basic-level object categorization because members of a category 97 typically have similar spatial structures, but vary in regards to their component parts (Ayzenberg & 98 Lourenco, 2019; Barenholtz & Tarr, 2006; Rosch et al., 1976).  99 Surprisingly, few studies have investigated whether the dorsal pathway represents object-centered 100 part relations, with most, historically, focusing on allocentric spatial coding (Haxby et al., 1991), 101 and even fewer have examined the relation between such coding in the dorsal pathway and object 102 



OBJECT-CENTERED RELATIONS IN DORSAL CORTEX  

5 
 

recognition processes in the ventral pathway (c.f. Zachariou et al., 2017). Thus, in the current study, 103 we tested whether the dorsal visual pathway represents the relations among component parts and 104 whether this information may support object recognition processes in the ventral pathway.  105 To this end, in a first experiment, we tested whether regions of dorsal cortex exhibit selectivity for 106 part relations, and examined the extent to which coding in these regions are independent of 107 allocentric relations and other object properties represented by the dorsal pathway, such as 3D 108 shape and tools. We also examined whether regions that represent part relations exhibit task-109 dependent functional connectivity with ventral cortex. We used effective connectivity analyses to 110 test the directionality of these interactions, and, specifically, whether dorsal cortex predicts the 111 response of ventral cortex, rather than the other way around. In a second experiment, we 112 investigate whether these dorsal regions can support object categorization and whether they do so 113 by representing the relations among parts. Using a decoding approach we measured the ability of 114 dorsal regions to classify naturalistic objects, and tested whether their response profile to these 115 objects was best characterized by a computational model that computes that spatial relations 116 among parts. Finally, as in Experiment 1, we examined the degree to which dorsal and ventral 117 cortex interact during object perception, as well as the directionality of their interactions.  118 

Materials and Methods 119 

Participants 120 Sample sizes and procedures for Experiment 1 (https://aspredicted.org/WSV_W7L) and 121 Experiment 2 (https://aspredicted.org/49C_D4C) were preregistered following pilot testing. We 122 recruited 12 participants (3 female, 9 male; Mage = 27.50, SD = 3.61) for Experiment 1, in which 123 functional regions of interest (ROIs) were identified, and 12 participants (6 female, 6 male; Mage = 124 26.83, SD = 3.7) for Experiment 2, in which the ROIs’ contributions to object recognition were 125 explored. Where possible, the same participants completed both Experiment 1 and 2, so that their 126 pre-defined functional ROIs could be used for analysis. In total, eight participants from Experiment 127 1 also participated in Experiment 2. The four new participants in Experiment 2 were scanned in a 128 second session (following the scanning procedure of Experiment 1).  129 Sample sizes were determined on the basis of prior studies which typically recruited between 10 130 and 15 participants (e.g., Bracci & Op de Beeck, 2016; Freud et al., 2017; Jeong & Xu, 2016). 131 Nevertheless, to ensure that our chosen sample size did not influence the results, all analyses were 132 replicated with a larger sample. Specifically, for Experiment 1, we included data from the four new 133 participants (3 female; 1 male) initially tested for Experiment 2 and scanned two more participants 134 (1 female; 1 male) thereby bringing the total sample size to 18 participants. For Experiment 2, we 135 scanned two additional participants (1 female; 1 male), bringing the total sample size to 14. 136 However, in keeping with the spirit of open science practices, we focus our analyses on the 137 preregistered sample sizes. 138 All participants were right-handed and had normal or corrected-to-normal visual acuity. 139 Participants were recruited from the Carnegie Mellon University community, gave informed 140 consent according to a protocol approved by the Institutional Review Board (IRB), and received 141 payment for their participation.  142 

Experimental Design and Statistical Analysis 143 

MRI scan parameters and analysis 144 
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Scanning was done on a 3T Siemens Prisma scanner at the CMU-Pitt Brain Imaging Data Generation 145 & Education (BRIDGE) Center. Whole-brain functional images were acquired using a 64-channel 146 head matrix coil and a gradient echo single-shot echoplanar imaging sequence. The acquisition 147 protocol for each functional run consisted of 48 slices, repetition time = 1 s; echo time = 30 ms; flip 148 angle = 64°; voxel size = 3 × 3 × 3 mm. Whole-brain, high-resolution T1-weighted anatomical 149 images (repetition time = 2300 ms; echo time = 2.03 ms; voxel size = 1 × 1 ×1 mm) were also 150 acquired for each participant for registration of the functional images.  151 All images were skull-stripped (Smith, 2002) and registered to the Montreal Neurological Institute 152 (MNI) 2mm standard template. Prior to statistical analyses, images were motion corrected, de-153 trended, and intensity normalized. To facilitate functional and effective connectivity analyses, 18 154 additional motion regressors generated by FSL were also included. All data were fit with a general 155 linear model consisting of covariates that were convolved with a double-gamma function to 156 approximate the hemodynamic response function. Data used to define regions of interest (ROIs) 157 was spatially smoothed using a 6 mm Gaussian kernel. All other data were unsmoothed. All data 158 were analyzed using the peak 100 voxels within a region (as defined by the functional localizer) or 159 using a 6mm sphere (~120 voxels) centered on the peak voxel. Qualitatively similar results were 160 found for all analyses when ROI sizes were varied parametrically from 100 to 400 voxels (the size 161 of the smallest ROI). Analyses were conducted using FSL (Smith et al., 2004), and the nilearn, 162 nibabel, and Brainiak packages for in Python (Abraham et al., 2014; Kumar et al., 2020).  163 

Experiment 1: Localization of object-centered part relations 164 Participants completed four localizer scans to measure voxels activated by object-centered part 165 relations, allocentric relations, 3D shape, and tools. The allocentric relations localizer was included 166 to test whether ROIs are sensitive to part relations specifically, or to spatial relations more 167 generally. Although dorsal regions are sensitive to many spatial properties (e.g., orientation), we 168 chose to measure allocentric relations because of their conceptual similarity to object-centered part 169 relations. Similarly, the 3D shape localizer was included to test whether these ROIs are sensitive to 170 shape information as defined by part relations, or by shape properties more generally. We 171 specifically chose to test 3D shape because extensive research has shown that dorsal cortex is 172 particularly sensitive to the depth properties of objects (Gillebert et al., 2015; Van Dromme et al., 173 2016), and may transmit this information to ventral cortex to support recognition (Freud et al., 174 2020). Finally, the tool localizer was included to test whether ROIs that represent part relations do 175 so for objects more generally, or exclusively for objects that afford action. 176 We used a ROI approach to define regions in parietal cortex that represent part relations. Then, we 177 used independent data to test the selectivity of these ROIs to part relations or to other visual 178 properties represented by the dorsal pathway, namely allocentric relations (Haxby et al., 1991), 3D 179 shape (Georgieva et al., 2008), and tools (Mahon et al., 2007). Furthermore, we conducted 180 conjunction analyses to examine the degree of overlap between dorsal ROIs sensitive to part 181 relations and the other dorsal properties (allocentric relations, 3D shape, tools). Finally, we 182 conducted task-dependent functional and effective connectivity analyses to examine the degree to 183 which dorsal ROIs sensitive to part relations are correlated with ventral regions, and whether part-184 relation coding in dorsal ROIs precedes, and even predicts, object processing in ventral ROIs.  185 For each localizer, we defined posterior and anterior parietal ROIs by overlaying posterior 186 intraparietal sulcus (pIPS) and anterior IPS (aIPS) binary masks and selecting voxels within those 187 
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masks that survived a whole-brain cluster-corrected threshold (p < .001). Broad pIPS and aIPS 188 masks were created by combining IPS0 with IPS1 and IPS2with IPS3 probabilistic masks, 189 respectively, from the Wang et al. (2014) atlas. For comparison of the activation profiles from 190 dorsal regions, an object-selective ROI in the ventral stream was defined similarly within the lateral 191 occipital complex (LOC) probabilistic parcel (Julian et al., 2012).  192 

Object-centered part relations localizer. Participants completed six runs (320 s each) of an object-193 centered part relations localizer consisting of blocks of object images in which either the spatial 194 
arrangement of component parts varied from image to image (part-relations condition), while the 195 parts themselves stayed the same; or the features of the component parts varied from image to 196 image (feature condition), while the spatial arrangement of the parts stayed the same (Figure 1A). 197 Objects could have one of 10 possible spatial arrangements, and one of 10 possible part features. 198 Spatial arrangements were selected to be qualitatively different from one another as outlined by 199 the recognition-by-components (RBC) model (e.g., end-to-end; end-to-middle; Biederman, 1987). 200 The component parts were comprised of qualitatively different features as outlined by the RBC 201 model (e.g., sphere, cube). Because many dorsal regions are particularly sensitive to an object’s 202 orientation and axis of elongation (Sakata et al., 1998), objects were presented in the same 203 orientations and were organized around the same elongated segment, ensuring they have identical 204 principal axes. Stimuli subtended ~6° visual angle on screen. 205 Each block of the part relations localizer contained 20 images, displaying each spatial arrangement 206 or part feature twice per block depending on the condition. Each image was presented for 800 ms 207 with a 200 ms interstimulus interval (ISI) for a total of 20 s per block. To minimize visual 208 adaptation, the location of object images on the screen varied by ~2° every trial. The image order 209 within the block was randomized. Participants also viewed blocks of a fixation cross (20 s). 210 Participants viewed 5 repetitions of each block per run, with blocks presented in a pseudorandom 211 order under the constraint that all three block types (relations, feature, fixation) were presented 212 once before repetition. To maintain attention, participants performed an orthogonal one-back task, 213 in which they responded via key press when detecting the repetition of an image on consecutive 214 presentations.   215 Object-centered part relations ROIs in pIPS and aIPS were defined in each individual using 4 out of 216 the 6 MRI runs as those voxels that responded more to the part-relations than the feature condition. 217 Selectivity was measured for each voxel in an ROI by extracting standardized parameter estimates 218 for each condition (relative to fixation) in left out runs (2 out of 6).  219 

Allocentric relations localizer. Participants completed two runs (368 s each) of the allocentric 220 relations localizer wherein some blocks they judged whether displayed objects had the same 221 allocentric relations, in this case the same distances between objects (distance condition), or had 222 the same brightness (brightness condition; Zachariou et al., 2017). A nearly identical display was 223 shown in both conditions, consisting of two diagonally arranged displays, each containing a line and 224 circle (Figure 1B). In the distance condition, the allocentric relations (i.e., distances) between the 225 line and circle, either matched across the two displays or differed. In the brightness condition, the 226 brightness of the circles across the two displays either matched or differed. On each trial, 227 participants were required to indicate whether the two displays were the same or different 228 (according to distance or brightness). Each display subtended ~4° visual angle on screen. Prior to 229 the start of the scan, participants’ individual sensitivity to distance and brightness (blocked) was 230 measured using an adaptive task where the distances and brightness of the stimuli was titrated 231 
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until accuracy on each of the tasks was approximately 75%. We specifically used this allocentric 232 localizer task because it has been well validated in human neuroimaging studies (Haxby et al., 1991; 233 Zachariou et al., 2014).  234 Each block contained 10 distance or brightness trials, in which five trials had matching displays and 235 five trials had different displays. Each trial was presented for 1700 ms with a 300 ms interstimulus 236 interval (ISI) for a total of 20 s per block. The trial order within the block was randomized. 237 Participants also viewed blocks of fixation (20s). Participants viewed 6 repetitions of each block per 238 run, with blocks presented in a pseudorandom order under the constraint that all three block types 239 (distance, brightness, fixation) were presented once before repetition.  240 Allocentric relation ROIs were defined in each individual as those voxels that responded more to 241 the distance than the brightness condition. Selectivity was measured for each voxel in an ROI by 242 extracting standardized parameter estimates for each condition (relative to fixation).  243 

Depth localizer. Participants completed two runs (308 s each) of a depth localizer wherein they 244 viewed blocks of object images that contained 3D shapes as defined from depth shading cues (3D 245 condition), or 2D shapes with comparable low-level properties (2D condition; Figure 1C). Each 246 condition was comprised of ten 3D or 2D object images from Georgieva et al. (2008). All stimuli 247 were ~6° visual angle on screen. Each block contained 20 images, displaying each possible 3D or 2D 248 image twice per block. Each image was presented for 700 ms with a 100 ms interstimulus interval 249 (ISI) for a total of 16 s per block. The image order within the block was randomized. Participants 250 also viewed blocks of fixation (16 s). Participants viewed 6 repetitions of each block per run, with 251 blocks presented in a pseudorandom order under the constraint that all three block types (3D, 2D, 252 fixation) were presented once before repetition. To maintain attention, participants performed an 253 orthogonal one-back task, responding to the repetition of an image on consecutive presentations.  254 Depth ROIs were defined in each individual as those voxels that responded more to the 3D than the 255 2D condition. Selectivity was measured for each voxel in an ROI by extracting standardized 256 parameter estimates for each condition (relative to fixation) in left out runs. 257 

Tool and object localizer. Participants completed two runs (340 s) of a tool localizer wherein they 258 viewed blocks of object images that contained tools (tool condition), manipulable non-tool objects 259 (non-tool condition), or box-scrambled object images (scrambled conditions; Figure 1D). Following 260 previous work (Mahon et al., 2007), we define tools here as manipulable objects whose physical 261 form is directly related to their function (e.g., a hammer). By contrast, manipulable non-tool objects 262 are those that can be arbitrarily manipulated, but whose form is not directly related to their 263 function (e.g., a carrot). Each condition was comprised of ten instances each of tools, non-tools, or 264 scrambled object images from (Chen et al., 2018; Chen et al., 2016). Each block contained 20 265 images, displaying each possible tool, non-tool, or scrambled image twice per block. All stimuli 266 subtended ~6° visual angle on screen. Each image was presented for 700 ms with a 100 ms 267 interstimulus interval (ISI) for a total of 16 s per block. The image order within the block was 268 randomized. Participants also viewed blocks of fixation (16 s). Participants viewed 5 repetitions of 269 each block per run, with blocks presented in a pseudorandom order under the constraint that all 270 four block types (tool, non-tool, scrambled, fixation) were presented once before repetition. To 271 maintain attention, participants performed an orthogonal one-back task, responding to the 272 repetition of an image on consecutive presentations.  273 
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Tool ROIs were defined in each individual as those voxels that responded more to the tool than the 274 non-tool condition. Object ROIs in LOC were defined as those voxels that responded more to objects 275 (tool + non-tool) than scrambled. Selectivity was measured for each voxel in an ROI by extracting 276 standardized parameter estimates for each condition (relative to fixation). 277 

 278 Figure 1. Example stimuli from the (A) object-centered part relations, (B) allocentric relations (C) depth, (D) 279 and tool localizers used in Experiment 1. 280 

Task-dependent functional connectivity. We conducted psychophysiological interaction (PPI; Friston 281 et al., 1997) analyses to examine whether there is task-dependent functional connectivity between 282 dorsal regions involved in computing part relations, and ventral regions involved in object 283 recognition (Friston et al., 1997). A contrastive psychological task covariate was created from the 284 part relations localizer by assigning timepoints corresponding to part-relations blocks a value of 1 285 and assigning timepoints corresponding to feature blocks a value of -1, then convolving the 286 covariate with a standard HRF. Physiological covariates were generated from each participant’s 287 cleaned residual timeseries by extracting the timeseries from a 6 mm sphere centered on the peak 288 voxel in dorsal ROIs that respond more to the relations than feature condition in the part relations 289 localizer. Finally, a psychophysiological interaction covariate was created for each participant by 290 multiplying the psychological and physiological covariates.  291 For each participant, 4 runs (randomly selected) of the part relations localizer were used to identify 292 the peak voxel that responded more to the part-relations than feature condition in pIPS and aIPS 293 parcels. The cleaned residual timeseries from the left-out two runs were extracted then normalized, 294 concatenated, and then further regressed on the psychological and physiological covariates 295 generated for those runs. A seed-to-whole-brain functional connectivity map was generated by 296 
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correlating the residual timeseries of every voxel with the interaction covariate, and applying a 297 fisher transform on the resulting map.  298 Data were analyzed in a cross-validated manner, such that every possible permutation of localizer 299 (4 runs) and left-out runs (2 runs) was used to define the seed region separately, and then analyze 300 connectivity. An average map was created by computing the mean across all permutations and a 301 final group map was created by computing the mean across subjects. Significant voxels were 302 determined by standardizing the group map and applying FDR-correction (p < 0.05). Together, this 303 procedure ensures that any correlation between regions is driven by the task-dependent neural 304 interaction, and not by the baseline correlation between regions or shared task activation.  305 

Effective connectivity analyses. We conducted hypothesis-driven Granger causality analyses 306 (Roebroeck et al., 2005; Seth et al., 2015) to examine the directionality of dorsal and ventral 307 functional connectivity, namely whether the responses in dorsal regions predict those of LOC. The 308 premise underlying Granger causality analyses is as follows. Dorsal cortex will be said to predict the 309 response of ventral cortex if incorporating past responses of dorsal cortex (i.e., t-1) improves the 310 prediction of current responses of ventral cortex over above ventral’s own past responses. 311 Although the low temporal resolution of fMRI precludes strong conclusions about directionality, 312 simulation studies have shown that temporal delays as low as tens of milliseconds can be resolved 313 from the hemodynamic response using Granger causality analyses (Deshpande et al., 2010; Katwal 314 et al., 2009). Thus, by describing the temporal order of events we may gain insight regarding the 315 directionality of information flow between dorsal and ventral cortices. 316 Cleaned residual timeseries were extracted from a 6 mm sphere centered on the peak voxel in 317 dorsal ROIs that responded more to the relations than feature condition in the part relations 318 localizer. We measured effective connectivity in a task-dependent manner by conducting Granger 319 causality analyses separately on the timeseries from the relations and feature blocks of the part 320 relations localizer.  321 For each participant, 4 runs (randomly selected) of the part relations localizer were used to identify 322 the peak voxel that responded more to the relations than feature condition in pIPS and aIPS parcels. 323 The cleaned residual timeseries from the left-out two runs were extracted separately from relation 324 and feature blocks, and then concatenated. A single null value was inserted between every block’s 325 timeseries to prevent prediction of temporally discontinuous timepoints. For each dorsal seed 326 region, Granger causality analyses were conducted twice, once with dorsal cortex as the predictor 327 and once with ventral cortex, namely LOC, as the predictor. Following prior work (e.g., Roebroeck et 328 al., 2005), effective connectivity between the areas was calculated by subtracting the dorsal → 329 ventral F statistic from the ventral → dorsal F statistic. A 1-timepoint (i.e., 1 TR) lag was used in all 330 analyses.  331 Data were analyzed in a cross-validated manner, such that every possible permutation of localizer 332 (4 runs) and left-out runs (2 runs) was used to define the seed region separately, and then analyze 333 connectivity. An average statistic was created by computing the mean F-difference for each 334 participant across all permutations. Following previous work, a group analyses were conducted 335 using a Wilcoxon signed-rank test comparing F-difference values to 0.  336 

Experiment 2: Basic-level object categorization in parietal ROIs 337 
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We tested whether the multivariate pattern in parietal ROIs that represent object-centered part 338 relations can support basic-level object categorization. We further used representational similarity 339 analyses (RSA), to examine the visual contributions of these ROIs to object recognition. Finally, we 340 used multivariate functional and effective connectivity analyses to examine the degree to which the 341 part relation ROIs in the dorsal pathway interact with the ventral pathway and the degree to which 342 dorsal object responses predict those in ventral cortex. 343 To this end, participants completed 8 runs (330 s each) during which they viewed images of 344 common objects. The object set was comprised of five categories (boat, camera, car, guitar, lamp) 345 each with five exemplars. Objects were selected from the ShapeNet 3D model dataset (Chang et al., 346 2015) and rendered to have the same orientation, texture, and color. The original texture and color 347 information was removed to ensure that similarity among objects was on the basis of shape 348 similarity, rather than other features. All stimuli subtended ~6° visual angle on screen (see Figure 349 2). To maintain attention, participants performed an orthogonal target detection task wherein they 350 were required to press a button anytime a red box appeared around the object. 351 Objects were presented in an event-related design with the trial order and ISI optimized to 352 maximize efficiency using Optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq/). Each stimulus 353 was presented for 1 s, with a jittered ISI between 1 and 8 seconds. Participants viewed 4 repetitions 354 of each object per run. For each participant, parameter estimates for each object (relative to 355 fixation) were extracted for each voxel. Responses to the stimuli in each voxel were then 356 normalized by subtracting the mean response across all stimuli. 357 

 358 Figure 2. Object stimuli presented in Experiment 2. Participants viewed five exemplars from five categories in 359 an event-related design.  360 

Representational similarity analyses. A 25 × 25 symmetric neural representational dissimilarity 361 matrix (RDM) was created for each ROI and participant by correlating (1-Pearson correlation) the 362 voxel-wise responses for each stimulus with every other stimulus in a pairwise fashion. Neural 363 RDMs were then Fisher transformed and averaged across participants separately for each ROI. Only 364 the upper triangle of the resulting matrix (excluding the diagonal) was used in subsequent analyses. 365 Neural RDMs were compared to RDMs created from a model that approximates the spatial relations 366 among component parts, namely a model based on the medial axis shape skeleton. Shape skeletons 367 provide a quantitative description of the spatial arrangement of component parts via internal 368 symmetry axes (Blum, 1973), and are tolerant to variations in the parts themselves (Ayzenberg et 369 al., 2019; Feldman & Singh, 2006). Accumulating research has shown that humans representations 370 of global form are well described by a skeletal model (Lowet et al., 2018), explaining more variance 371 
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in human responses than conventional ANNs (Ayzenberg et al., 2021; Ayzenberg & Lourenco, 2019) 372 and other descriptors of shape, such as the principal axis (Ayzenberg et al., 2019; Firestone & 373 Scholl, 2014). For our skeletal model, we used a flux-based medial axis algorithm (Dimitrov et al., 374 2003; Rezanejad & Siddiqi, 2013) which computes a ‘pruned’ skeletal structure tolerant to local 375 variations (Feldman & Singh, 2006). Skeletal similarity between objects was computed as the mean 376 Euclidean distance between each point on one object’s skeleton structure with the closest point on 377 a second object’s skeleton structure.  378 We also compared neural RDMs for models of low- and high-level vision, namely the Gabor-jet 379 model, a model of image-similarity that approximates the response profile of early visual regions 380 (Margalit et al., 2016), and the penultimate layer of CorNet-S, a recurrent artificial neural network 381 designed to approximate the response profile of the ventral visual pathway in monkeys (Kubilius et 382 al., 2019). Object similarity for both Gabor-jet and CorNet-S were computed as the mean Euclidean 383 distance between feature vectors for each object image (see Figure 9). 384 

Multivariate connectivity analyses. We conducted multivariate pattern dependence (MVPD) analyses 385 (Anzellotti et al., 2017) to examine whether dorsal ROIs involved in computing part relations 386 interact with ventral object regions during object viewing. MVPD tests the degree to which the 387 multivariate activation timeseries of a seed region accounts for the variance of the multivariate 388 activation timeseries of a target region.  389 For each participant, data were split into a training (6 runs) and test (2 runs) set. A multivariate 390 timeseries was generated from each participant’s cleaned residual timeseries training data by 391 extracting the timeseries of each voxel from a 6 mm sphere centered on the peak voxel in dorsal 392 ROIs that responds more to the part-relations than feature blocks in the object-centered relations 393 localizer. The dimensionality of the voxel timeseries was then reduced by applying principal 394 components analysis (PCA) and selecting the components that explain 90% of the variance. The 395 same procedure was then repeated for a target region using a searchlight with 6 mm sphere. Next, 396 using the training data, a linear regression was fit separately on each component of the target 397 region using the components from the seed region as predictors. This procedure results in a series 398 of beta weights describing the linear mapping between the principal components of the seed region 399 to each individual principal component of the target region. For computational efficiency, the 400 searchlight was conducted within an extended visual cortex mask created using an atlas from Wang 401 et al. (2014) comprised of occipital, dorsal, and ventral visual cortices. 402 The beta weights from the training data are then used to generate a predicted multivariate 403 timeseries for left-out runs of the target region, which is then correlated (Pearson) with the actual 404 observed timeseries of the target region. A final fit value is computed as the weighted mean of 405 correlations across target region principal components, with the weighting of each correlation 406 determined by the proportion of variance explained by each target component. A single map for 407 each participant is created by averaging the weighted correlations following 5-fold cross-validation, 408 and then Fisher transforming the correlations. A final group map is created by computing mean 409 across participants. Significant voxels were determined by standardizing the group map and 410 applying FDR-correction (p < 0.05). 411 

Multivariate effective connectivity. We conducted hypothesis-driven multivariate Granger causality 412 analyses to examine the directionality of functional connectivity between dorsal and ventral 413 pathways. Like its univariate counterpart, multivariate Granger causality tests whether past 414 



OBJECT-CENTERED RELATIONS IN DORSAL CORTEX  

13 
 

responses of one multivariate timeseries (e.g., dorsal cortex) predict the current responses of a 415 second multivariate timeseries (e.g., LOC) over and above their own past timepoints.  416 For each participant, the entire cleaned residual timeseries (8 runs) was extracted from a 6 mm 417 sphere centered on the peak voxel in dorsal ROIs that responds more to the part-relations than 418 feature blocks in the object-centered relations localizer. The dimensionality of the voxel timeseries 419 was then reduced by applying principal components analysis (PCA) and selecting the components 420 that explain 90% of the variance. The same procedure was then repeated for LOC. To conduct 421 multivariate Granger causality, the total number of components for each ROI was matched to the 422 ROI with fewer components.  423 For each dorsal seed region, multivariate Granger causality was conducted twice, once with dorsal 424 seed region as the predictor and once with LOC as the predictor. As in univariate Granger causality, 425 effective connectivity between the two regions was calculated by subtracting the dorsal → ventral F 426 statistic from the ventral → dorsal F statistic.  A 1-timepoint (i.e., 1 TR) lag was used in all analyses. 427 Group analyses were conducted using a Wilcoxon signed-rank test comparing F-difference values to 428 0. 429 

Results 430 

Experiment 1: Selectivity for object-centered relations in the dorsal pathway 431 

ROI definition. See Table 1 for a summary of significant group-level clusters from every localizer. 432 The part relations localizer (4 runs) identified significant clusters in pIPS and aIPS in the right 433 hemisphere (rpIPS, raIPS) of every participant and in 10 out of 12 participants in the left 434 hemisphere (lpIPS, laIPS; see Figure 3A). Likewise, a group averaged map created using 2 runs (left 435 out to measure selectivity) from every participant also revealed significant clusters in pIPS and 436 aIPS, though these were found exclusively in the right hemisphere (see Figure 3B).  437  438 
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 439 Figure 3. Significant activation to part relations (versus features) condition from the object-centered part 440 relations localizer displayed (A) for each individual participant and in (B) a group average map inflated 441 (above) and flattened (below). Values reflect the standardized parameter estimate. 442   443 
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Table 1. Significant group level clusters for the object-centered part relations, allocentric spatial relations, and 444 tool localizer. MNI Coordinates correspond to the peak voxel within each cluster. The depth localizer is not 445 listed because there were no significant clusters at the group level. 446 

Localizer Region 
MNI Coordinate 

x y z Object part relations             1 R Posterior Intraparietal Sulcus (IPS0) 26 -76 44   2 R Ventral Intraparietal Complex (VIP) 22 -58 64   3 R Middle Temporal Area (MT) 42 -78 12   4 R Temporal Parietal Junction (TPJ) 52 -60 -2         Allocentric spatial relations             1 L Intraparietal sulcus (IPS1) -26 -72 24   2 L Ventral Intraparietal Complex (VIP) -16 -68 58   3 R Ventral Intraparietal Complex (VIP)  16 -62 56   4 L Secondary Somatosensory Cortex (S2) -38 -38 48   5 R Secondary Somatosensory Cortex (S2)  45 -40 63   6 R V3A/V3B  34 -78 16   7 L Middle Temporal Area (MT) -48 -72 2   8 L Fundal Superior Temporal (FST) -48 -66 -6         Tools             1 L Lateral Interparietal Area (LIP) 24 -58 64   2 R Ventral Intraparietal Complex (VIP) -22 -54 58   3 L Middle Temporal Area (MT) -46 -76 6   4 L Temporal Parietal Junction (TPJ) -58 -72 0   5 R Temporal Parietal Junction (TPJ)  56 -68 4         
 447 

Selectivity for part relations. To test whether these ROIs are selective for object-centered part 448 relations, we examined the response in this region (relative to fixation; see Material and Methods) 449 to (1) activation in the relations blocks of the part relations localizer (independent runs), as well as 450 the other dorsal conditions, namely, (2) distance as determined from the allocentric relations 451 localizer, (3) 3D shape from the depth localizer, and (4) tools from the tool localizer.  452 A repeated-measures ANOVA with ROI (pIPS, aIPS), hemisphere (left, right), and condition (part 453 relations, distance, 3D shape, tools) as within-subjects factors revealed that there was a significant 454 main-effect of condition, F(3, 24) = 8.26, p < .001,  ηp2  = 0.53. There were no other main-effects or 455 interactions (ps > .102). Post-hoc comparisons (Holm-Bonferroni corrected) revealed that 456 activation to the part-relations condition was higher than distance (t[11] = 4.64, p < .001, d = 1.55), 457 3D shape (t[11] = 4.16, p = .002, d = 1.39), and tool (t[11] = 4.48, p = .008, d = 1.16) conditions. 458 Thus, these analyses suggest that the dorsal pathway represents object-centered part relations, and 459 that this representation is independent of allocentric spatial relations and other object properties 460 represented by the dorsal pathway. 461 Although these analyses did not reveal a significant difference between left and right hemisphere 462 ROIs, examination of the group map suggests that the part relations may be more strongly 463 represented in the right hemisphere. To explore these possible differences, we also analyzed each 464 
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ROI separately. Note, due to the exploratory nature of this analysis, these results should be 465 interpreted with caution.  466 Separate repeated measures ANOVAs were conducted for participants’ left and right pIPS and aIPS 467 which revealed main-effects of condition in all four regions (lpIPS: F[3, 33] = 3.92, p = .021, ηp2  = 468 0.33; rpIPS: F[3, 33] = 8.70, p < .001, ηp2  = 0.44; laIPS: F[3, 33] = 4.69, p = .009, ηp2  = 0.34; raIPS: F[3, 469 33] = 12.57, p < .001, ηp2  = 0.53), with the response to part relations numerically highest in each 470 region (see Figure 4). However, post-hoc comparisons (Holms-Bonferroni corrected) revealed that 471 activation to part relations was statistically highest only in the right hemisphere parietal regions, 472 but not the left hemisphere parietal regions. Namely, in the right hemisphere, the activation to part 473 relations was significantly higher than distance (rpIPS: t[11] = 4.66, p < .001, d = 1.34; raIPS: t[11] = 474 4.18, p < .001, d = 1.21), 3D shape (rIPS: t[11] = 3.47, p = .006, d = 1.00; raIPS: t[11] = 5.77, p < .001, 475 
d = 1.67), and tools (rpIPS: t[11] = 4.05, p = .001, d = 1.17; raIPS: t[11] = 4.52, p < .001, d = 1.31). By 476 contrast, in the left hemisphere, pIPS responses to part relations were higher than distance (t[11] = 477 3.21, p = .023, d = 1.07), but not 3D shape or tools (ts < 2.65, ps > .071, ds < 0.88). In left aIPS, 478 responses were higher than distance (t[11] = 3.51, p = .010, d = 1.1) and 3D shape (t[11] = 2.87, p = 479 .039, d = 0.91), but not tools (t[11] = 2.39, p = .097, d = 0.75). In combination with the group 480 statistical map (Figure 3), these results suggest that object-centered part relations may be 481 represented more strongly in the right than left hemisphere parietal regions. 482   483 
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 484 Figure 4. Activation to the part relations (left-out runs), allocentric distance, 3D shape, and tools conditions in 485 (A) left pIPS and (B) right pIPS, (C) left aIPS, and (D) right aIPS. Activation values reflect the standardized 486 parameter estimate. Error bars reflect standard error of the mean. 487   488 
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Conjunction analyses. To explore further the degree to which parietal regions involved in computing 489 part relations overlap with regions computing other dorsal properties, we conducted whole-brain 490 conjunction analyses. First, group-averaged statistical maps were created for every localizer and a 491 cluster-correction threshold applied (p < .001; see Table 1). The resulting statistical maps were 492 consistent with prior research on the neural basis of the allocentric relations (Zachariou et al., 493 2017) and of tool representations (Chen et al., 2016; Gallivan et al., 2013). No significant clusters 494 were found for the activation profiles on the depth localizer (Georgieva et al., 2008).  495 Next, we calculated the proportion of independent and overlapping voxels by converting the 496 thresholded statistical map from each group-averaged localizer into binary masks and overlaying 497 them with the thresholded statistical map from part relations localizer. Binomial tests revealed 498 that, in right pIPS, there were significantly more independent than overlapping voxels that 499 responded to part relations. Here, the allocentric relations ROI had the greatest amount of overlap 500 with part relations ROI in pIPS (overlapping voxels: 42%, p < .001). There were no overlapping 501 voxels from the depth or tool ROIs above the cluster corrected threshold. By contrast, in right aIPS, 502 there were significantly more voxels that overlapped with the allocentric relations ROI than were 503 independent (overlapping voxels: 65%, p < .001). There was also overlap with the tool ROIs 504 (overlapping voxels: 43%, p < .001), but there were significantly more independent voxels than 505 overlapping ones. There were no overlapping voxels with the depth localizer (0%). Together these 506 results suggest part relations may be represented along a gradient within the dorsal pathway, with 507 both distinct and overlapping components.  508 Finally, to visualize this gradient better, statistical maps were converted into proportions, such that, 509 for each voxel, a value closer to 1 indicates a greater response to part relations and a value closer 0 510 indicates a greater response to one of the other dorsal properties (e.g., allocentric relations; see 511 Figure 5). Consistent with the analyses above, these maps reveal the least overlap between part 512 relations and other dorsal ROIs in pIPS and the most overlap in aIPS.  513  514  515  516 
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 517 Figure 5. Conjunction maps illustrating areas of distinct and overlapping coding for object-centered part 518 relations and (A) allocentric relations, (B) depth, and (C) tools. A value closer 1 indicates a greater response 519 to part relations; a value closer to 0 indicates a greater response to the control localizer. Maps are zoomed in 520 on the visual cortex for easier inspection. 521 

Task-dependent functional connectivity. If the role of the dorsal pathway in object recognition is to 522 compute object-centered part relations, then a prediction is that pIPS and aIPS will also be 523 functionally connected to the ventral pathway – the nexus of object recognition processing. More 524 specifically, the prediction is that functional connectivity between right and left pIPS or aIPS with 525 ventral cortex will depend on the task demands, such that connectivity would be greatest when 526 perception of part relations is needed, as in the relations, but not feature, condition of the localizer. 527 To test this prediction, we conducted PPI analyses to examine whether there was task-dependent 528 
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functional connectivity between left and right pIPS and aIPS regions involved in computing object-529 centered part relations, and ventral regions involved in object recognition (see Materials and 530 Methods).   531 Examination of the group map (Figure 6) revealed significant connectivity between right 532 hemisphere pIPS and aIPS with bilateral ventral pathway regions. Interestingly, there was relatively 533 little connectivity with other dorsal regions, suggesting that the function of right hemisphere pIPS 534 and aIPS may be specifically in the service of object recognition processes in the ventral pathway 535 rather than action processes in other dorsal regions. There was no significant connectivity with left 536 pIPS or aIPS that survived FDR correction. 537 To further examine the specificity of task-dependent connectivity to these regions, we reanalyzed 538 the data from the part relations localizer using the peak voxel from the allocentric relations ROI in 539 the left hemisphere as our seed region. This ROI was chosen because it does not overlap with part 540 relations ROIs, but nevertheless has a conceptually similar representation. These analyses revealed 541 no significant connectivity between allocentric relations ROIs in the left hemisphere and the ventral 542 visual pathway. Moreover, a direct comparison between regions (Holm-Bonferroni corrected), 543 revealed that task-dependent connectivity with LOC, a ventral object region, was significantly 544 stronger with right pIPS (lLOC: t(11) = 3.41, p = .005, d =0.99; rLOC: t(11) = 3.28, p = .007, d =0.95) 545 and aIPS (lLOC: t(11) = 4.36, p < .001, d =1.26; rLOC: t(11) = 4.56, p < .001, d =1.32) than left 546 allocentric relations ROIs. There were no differences in connectivity between the other pIPS and 547 aIPS regions (ps > .217). Together, these findings suggest that dorsal regions involved in computing 548 object-centered part relations, particularly in the right hemisphere are preferentially connected to 549 the ventral stream to support object recognition. 550 
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  551 Figure 6. Task-based functional connectivity results. (A-B) Functional connectivity map (zoomed in on the 552 visual cortex) for (A) right pIPS and (B) right aIPS. Seed regions are displayed as white circles. There was no 553 functional connectivity above the cluster corrected threshold in left pIPS, left aIPS, or the left allocentric ROI. 554 (C) Plots comparing the connectivity between pIPS, aIPS, and the other ROIs in left LOC and right LOC ROIs. 555 Error bars reflect standard error of the mean. 556 

Task-dependent effective connectivity. If dorsal regions propagate information about object-centered 557 part relations to the ventral pathway for recognition, then one should expect that representations 558 of part relations in pIPS and aIPS will temporally precede and will predict those in ventral cortex. 559 More specifically, the prediction is that the past timepoints of pIPS or aIPS will predict current 560 timepoints of ventral cortex over and above ventral’s own past time points. Moreover, this effect 561 should be strongest for the relations condition of the localizer, not the feature condition. To test this 562 prediction, we conducted Granger causality analyses to examine the effective connectivity between 563 left and right pIPS and aIPS regions involved in computing object-centered part relations and LOC 564 involved in object recognition (see Materials and Methods).   565 A Wilcoxon signed-rank comparison to 0 revealed significant effective connectivity during the 566 relations blocks between left pIPS with right LOC (W = 74, p = .002, d = 0.90), but not left LOC (W = 567 
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57, p = .088, d = 0.46), and between right pIPS with right LOC (W = 66, p = .017, d = 0.70), but not 568 left LOC (W = 45, p = .339, d = 0.15) (see Figure 7). There was positive effective connectivity 569 between right aIPS with left (W = 60, p = .055, d = 0.54) and right (W = 59, p = .065, d = 0.51) LOC 570 during the relations blocks, although these effect did not reach the criteria for significance. There 571 were no significant effects for left aIPS for the relations blocks in either left or right LOC (Ws < 46, 572 
ps > .311, ds < 0.18), nor any of the ROIs in the feature blocks (Ws < 56, ps > .102, ds < 0.44).  573 Separate repeated-measures ANOVAs were further conducted to analyze effective connectivity as a 574 function of ROI (pIPS, aIPS), hemisphere (left, right), and condition (relations, features). As 575 hypothesized, these analyses revealed a significant main-effect of condition, such that effective 576 connectivity was overall higher for the relations than feature blocks in left LOC, F(1, 11) =7.45, p = 577 .020, ηp2 = 0.40, though right LOC did not meet criteria for significance, F(1, 11) =3.60, p = .084, ηp2 = 578 0.25. Moreover, there was a significant ROI × hemisphere interaction in both left LOC, F(1, 11) 579 =5.46, p = .039, ηp2 = 0.33, and right LOC, F(1, 11) =7.26, p = .019, ηp2 = 0.41, such that effective 580 connectivity was higher in right aIPS than left aIPS. However, none of the post-hoc comparisons 581 were significant following Holm-Bonferroni correction (ps > .066). Together, these findings suggest 582 that pIPS and aIPS transmit information about object-centered part relations to the ventral 583 pathway, rather than the other way around.  584 

 585 Figure 7. Plots comparing the task-based effective connectivity between left and right pIPS and aIPS with left 586 LOC and right LOC ROIs. Error bars reflect standard error of the mean. 587 

Analysis on larger sample. All findings from Experiment 1 were replicated successfully with a larger 588 sample (n = 18). The part relations localizer (4 runs) identified significant clusters in pIPS and aIPS 589 in all 18 participants in the right hemisphere, but 14 participants exhibited left pIPS ROI and 16 590 exhibited left aIPS ROI. We found selectivity for object-centered part relations in right pIPS and 591 aIPS, with responses greater than allocentric relations, 3D shape, and tools, (ps < 0.006). Moreover, 592 we found significant task-based functional connectivity between right pIPS and aIPS with both left 593 and right LOC, which was greater than a control region defined using allocentric relations (ps < 594 .008). Finally, we found significant effective connectivity between right pIPS with right LOC (p = 595 .048) during the relations, but not feature blocks of the part-relations localizer. Importantly, there 596 was a main effect of condition in left LOC (p = .010), such that there was overall greater effective 597 connectivity during the relations blocks than the feature blocks.  598 

Experiment 2: Dorsal contributions to object recognition 599 
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Category decoding. To test whether dorsal regions that compute object-centered part relations 600 contribute to object recognition, we examined whether multivariate pattern within these regions 601 could be used to classify objects (see Figure 2). Using a 20-fold cross-validation procedure, a 602 Support Vector Machine (SVM) classifier was trained on the multivariate pattern for three 603 exemplars from each category, and then tested on the category of the two left out exemplars.  604 One-sample comparisons to chance (0.20) revealed that category decoding was significantly above 605 chance in right pIPS, M = 32.7%, t(11) = 3.15, p = .009, d = 0.91, but not in right aIPS, left pIPS or left 606 aIPS ROIs defined on the basis of part relations (Ms < 23.4%, ps > .110, ds < 0.72; Figure 8). To 607 further examine the specificity of category decoding in dorsal regions, we also tested how well a left 608 hemisphere allocentric relations ROI can decode object categories. These analyses revealed that 609 decoding was not above chance in the left allocentric ROI, M = 18.7%, t(11) = -0.82, p = .780, d = 610 0.23. Direct comparisons between right pIPS and the other regions (Holm-Bonferroni corrected) 611 further confirmed that, categorization accuracy was significantly higher in right pIPS than left 612 allocentric regions (t[11] = 3.88, p = .004, d = 1.23 and left aIPS (t[11] = 4.32, p = .001, d = 1.37), 613 though not right aIPS (t[11] = 2.65, p = .096, d = 0.837) nor left pIPS (t[11] = 2.48, p = .127, d = 614 0.78). Next, we examined how category decoding in the dorsal pathway compares to ventral 615 pathway object recognition regions, namely LOC. As would be expected, categorization accuracy 616 was above chance in left and right LOC, (lLOC: M = 26.0%, t[11] = 3.56, p = .004, d = 1.03; rLOC: M  = 617 26.7%  t[11] = 2.30, p = .042, d = 0.66), with the neither region differing significantly from right 618 pIPS (ts < 1.62, ps > .357, ds < 0.42). Thus, regions in right posterior IPS involved in computing 619 object-centered part relations can support categorization of object exemplars. 620 

 621 Figure 8. Object categorization accuracy for pIPS, aIPS, the left allocentric ROI, and LOC. Error bars reflect 622 standard error of the mean.  623 

Representational content of dorsal ROIs. The results above show that a region in pIPS defined on the 624 basis of part relations can be used to decode the category of objects. Yet, despite the fact that this 625 
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region was defined using a part relations localizer, it is possible that categorization was 626 accomplished using other visual properties. Indeed, it is well known that pIPS retains a retinotopic 627 organization (Wang et al., 2014) and is tightly connected to early visual cortex (Greenberg et al., 628 2012). Thus, it is possible that the categorization performance of right pIPS may have been 629 achieved on the basis of low-level image-level similarity. Moreover, it is unclear to what degree 630 categorization in right pIPS is accomplished using high-level visual representations distinct from 631 those in the ventral pathway.  632 To examine whether right pIPS accomplished object categorization on the basis of object-centered 633 part relations, we used representational similarity analyses (RSA). Specifically, we tested whether a 634 skeletal model, which approximates object-centered part relations, explains unique variance in 635 pIPS over and above other models of vision (see Materials and Methods). Like the representation 636 measured by the part relations localizer, skeletal models describe the spatial arrangement of object 637 parts while ignoring variations in the parts themselves (see Figure 9). Indeed, skeletal models 638 explain more variance in participants judgments of part relations than other models of vision 639 (Ayzenberg & Lourenco, 2019; Lowet et al., 2018).  640 As a comparison, we also tested whether ROIs are well described by Gabor-jet (GBJ), a model of 641 low-level image similarity (Margalit et al., 2016; see Figure 9), as well as CorNet-S a neural network 642 model whose upper layers approximate the response profile of high-level ventral regions in 643 monkeys (Kubilius et al., 2019; Schrimpf et al., 2018; see Figure 9).   644 

 645 Figure 9. Representational dissimilarity matrices (RDMs) and a schematic illustration of the (left) the skeletal 646 model, (middle) Gabor-jet model, and (right) CorNet-S. 647 To test whether the skeletal model explained unique variance in right pIPS, we conducted linear 648 regression analyses with the neural RDM from pIPS as the dependent variable and the different 649 models of visual similarity as predictors (Skeleton ∪ GBJ ∪ CorNet-S; see Figure 9). Consistent with 650 the localizer results of Experiment 1, these analyses revealed that only skeletal model explained 651 unique variance in right pIPS (β = 0.33, p < .001), not the other models (GBJ: β = 0.04, p = .493; 652 CorNet-S: β = -0.02, p = .839). The skeletal model also explained the most variance in right aIPS, 653 though it approached but did not meet the criteria for statistical significance (skeleton: β = 0.14, p = 654 
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.068; GBJ: β = 0.00, p = .968; CorNet-S: β = -0.07, p = .376). The skeletal model did not explain 655 significant unique variance in any other dorsal ROI (β < 0.12, ps > .113; see Figure 10A-B). These 656 findings are consistent with the results of Experiment 1, which suggest that pIPS and aIPS ROIs, 657 particularly those in the right hemisphere, represent objects in terms of their object-centered part 658 relations. Moreover, these results suggest that categorization in right pIPS was accomplished by 659 representing part relations, not other low- or high-level visual properties.  660   661 
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 662 

 663 Figure 10. Results of the representational similarity analyses (RSA). (A-C) Standardized coefficients (Betas) 664 from the linear regression analyses examining the fit of the skeletal, Gabor-jet, and CorNet-S models for left 665 and right (A) pIPS, (B) aIPS, and (C) LOC.  666 

Unique contributions of dorsal ROIs to ventral processing. Next, we examined whether right pIPS 667 represents distinct visual information from ventral object regions such as LOC. We repeated the 668 linear regression analyses, except here we used neural RDMs from left and right LOC as the 669 dependent variable. These analyses revealed that, the skeletal model explained unique variance in 670 left (β = 0.17, p = .023), but not right LOC (β = 0.04, p = .582; see Figure 10C). 671 
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Although in Experiment 1 we found that coding of part relations in the dorsal pathway precedes the 672 ventral pathway, this finding nevertheless raises the question: do regions of dorsal cortex compute 673 object-centered part relations and then transmit that information to ventral cortex for object 674 recognition? Or, are part relations computed in the ventral pathway, as previously proposed 675 (Ayzenberg et al., 2021; Behrmann et al., 2006) and transmitted to dorsal regions such as right 676 pIPS? Alternatively, part relations may be coded in parallel in both pathways. To investigate these 677 possibilities, we examined whether multivariate response in pIPS mediates the relation between 678 the skeletal model and the neural RDM in LOC. In other words, we tested whether skeletal coding in 679 LOC is represented independently or by way of right pIPS. 680 To test these possibilities, we first repeated the linear regression analyses in left LOC, but this time 681 we included the neural RDM from right pIPS in addition to the skeleton, GBJ, and CorNet-S models. 682 With right pIPS included as a predictor, the skeletal model no longer explained unique variance in 683 left LOC (β = 0.07, p = .345), only right pIPS (β = 0.31, p < .001) and CorNet-S (β = 0.14, p = .053) 684 explained unique variance. By contrast, when linear regression analyses are conducted on right 685 pIPS with the left LOC RDM as a predictor in addition to the skeleton, GBJ, and CorNet-S models, 686 both the skeleton model (β = 0.28, p < .001) and left LOC RDM (β = 0.30, p < .001) explain unique 687 variance. Finally, a mediation analysis (with GBJ and CorNet-S as covariates) confirmed that right 688 pIPS fully mediated the relation between the skeletal model and left LOC (b = 0.10, 95% CI [.05, 689 .16]). There was no direct relation otherwise (b = 0.07, 95% CI [-.074, .21]). By contrast, when left 690 LOC is used as a mediator between the skeletal model and right pIPS, there continues to be a direct 691 relation between the skeletal model and right pIPS (b = 0.28, 95% CI [0.14, 0.42]). Here, left LOC 692 acts as only a partial mediator (b = 0.05, 95% CI [0.00, 0.10]). Subsequent analyses revealed that 693 other dorsal ROIs (e.g., right aIPS) did not act a mediator between the skeletal model and left LOC. 694 Together these results suggest that object-centered part relations, as approximated by a skeletal 695 model, are computed in right pIPS independently of ventral regions. Moreover, representations of 696 part relation in ventral regions such as left LOC may arise via input from right pIPS.  697 

Multivariate connectivity. Thus far, we have documented that an ROI in pIPS, particularly in the 698 right hemisphere, is sensitive to object-centered part relations, able to categorize objects, and 699 account for the representation of part relations in the ventral pathway. Together, these results 700 suggest that this region interacts with ventral regions in support of object recognition. To provide 701 converging evidence for this result, we used multivariate pattern dependence (MVPD) analyses to 702 test whether right pIPS also exhibits functional connectivity with ventral pathway regions during 703 object viewing (see Materials and Methods). 704 Examination of the group map (Figure 11B) revealed broad connectivity between both right pIPS 705 with bilateral dorsal and ventral regions. To examine the specificity of this interaction between 706 right pIPS and ventral regions, we also examined the multivariate connectivity patterns of left pIPS 707 and bilateral aIPS defined on the basis of part relations. Like right pIPS, these regions also showed 708 broad connectivity with bilateral dorsal and ventral regions (see Figure 11). Direct comparisons 709 between these ROIs (Holm-Bonferroni corrected), revealed that connectivity between right pIPS 710 and bilateral LOC was stronger than both left aIPS (lLOC: t(11) = 3.09, p = .028, d = 0.97; rLOC: t(11) 711 = 3.77, p = .005, d = 1.19) and right aIPS (lLOC: t(11) = 2.62, p = .072, d = 0.83; rLOC: t(11) = 3.16, p 712 = .019, d = 1.00). There were no differences between left and right pIPS (ps > .312, ds < 0.70), nor 713 among the other ROIs (ps > .130, ds < 0.71) Together, these findings suggest that right pIPS regions 714 involved in computing object-centered part relations are connected to the ventral pathway. 715 



OBJECT-CENTERED RELATIONS IN DORSAL CORTEX  

28 
 

 716 

 717 Figure 11. Multivariate functional connectivity results. (A-D) Functional connectivity map for (A) left pIPS, 718 (B) right pIPS, (C) left aIPS, and (D) right aIPS. Seed regions are displayed as a white circle. (C) Plots 719 comparing the connectivity between ROIs in left LOC and right LOC ROIs. Error bars reflect standard error of 720 the mean. 721 
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Multivariate effective connectivity. If right pIPS transmits information about part relations to LOC 722 for object recognition, then object information should also be processed in right pIPS prior to 723 ventral ROIs. To test this possibility, we conducted multivariate granger causality analyses to test 724 the effective connectivity between IPS regions and LOC (see Materials and Methods).  725 A Wilcoxon signed-rank comparison to 0 revealed significant effective connectivity between left 726 pIPS with left LOC (W = 50, p = .010, r = 0.82), but not right LOC (W = 38, p = .161, r = 0.38; see 727 Figure 12). Importantly, there was also significant effective connectivity between right pIPS and left 728 LOC (W = 61, p = .046, r = 0.56), as consistent with the mediation analyses presented previously. 729 The effective connectivity between right pIPS and right LOC did not reach significance (W = 59, p = 730 .065, r = 0.51). Finally, there was also significant effective connectivity between left aIPS with left 731 LOC (W = 68, p = .010, r = 0.74), though not right LOC (W = 59, p = .065, r = 0.51), as well as between 732 right aIPS and both left LOC (W = 60, p = .055, r = 0.54) and right LOC (W = 71, p = .005, r = 0.82). 733 Separate repeated-measures ANOVAs were conducted to analyze effective connectivity as function 734 of ROI (pIPS, aIPS) and hemisphere (left, right). These analyses revealed a significant main-effect of 735 hemisphere, such that effective connectivity between right hemisphere IPS ROIs and right LOC 736 were overall higher than left hemisphere IPS ROIs, F = 5.37, p = .046, ηp2 = 0.37. There were no 737 other significant effects or interactions (ps > .451). Thus, as in Experiment 1, these results show that 738 object processing in dorsal cortex precedes and predicts object processing in ventral cortex. 739 Importantly, that pIPS exhibited significant effective connectivity with left LOC is consistent with 740 the hypothesis that pIPS propagates information about part relations to the ventral pathway for 741 object recognition. 742 

 743 Figure 12. Plots illustrating the multivariate effective connectivity between pIPS and aIPS with left LOC and 744 right LOC ROIs. Error bars reflect standard error of the mean. 745 

Analysis on larger sample. All findings from Experiment 2 were replicated successfully with a larger 746 sample (n = 14). Object category information was successfully decoded from right pIPS (p = .006), 747 as well as left and right LOC (ps < .030), but not any of the other ROIs. There was no significant 748 difference in decoding performance between right pIPS with either left or right LOC (ps > .264). 749 Representational similarity analyses further showed that objects in right pIPS were best 750 represented by a skeletal model, which approximates the spatial relations among an object’s parts 751 (p = .001), rather than the Gabor-jet model or CorNet-S (ps > .493). We also found that a skeletal 752 model explained significant variance in left LOC alongside CorNet-S (ps < .001). Follow-up analyses 753 
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revealed that the relation between the skeletal model and left LOC was partially mediated by right 754 pIPS (p = .003). Next, multivariate functional connectivity analyses revealed significant functional 755 connectivity between right pIPS with both left and right LOC. In left LOC, this connectivity was 756 significantly greater than left aIPS (p < .021), and in right LOC was significantly greater than both 757 left and right aIPS (ps < .019). Finally, multivariate effective connectivity analyses revealed 758 significant effective connectivity between right pIPS with both left and right LOC (ps < .050). 759 

General Discussion 760 Here, we examined the contribution of the dorsal visual pathway to object recognition. Given its 761 sensitivity to spatial information and its contribution to object perception (Freud et al., 2020), we 762 hypothesized that dorsal cortex may compute the relations among an object’s parts and transmit 763 this information to ventral cortex to support object recognition. We found that regions in posterior 764 and anterior IPS, particularly in the right hemisphere, displayed selectivity for part relations 765 independent of allocentric spatial relations and other dorsal object representations, such as 3D 766 shape and tools. Importantly, these regions also exhibited task-dependent functional and effective 767 connectivity with ventral regions, such that connectivity increased when part relations differed.  768 Next, we found that object category could be decoded successfully in right pIPS, with categorization 769 performance comparable to ventral object regions. Similarity analyses further confirmed that 770 decoding in right pIPS was supported by a representation of part relations, as approximated by a 771 skeletal model, and not by low- or high-level image properties. Crucially, we found that the 772 multivariate response in right pIPS mediated representations of part relations in ventral cortex, 773 with pIPS also exhibiting higher multivariate functional and effective connectivity with ventral 774 cortex. Together, these findings highlight how object-centered part relations, a property crucial for 775 object recognition, are represented neurally, and validate the strong link between dorsal and 776 ventral visual cortex in accomplishing object recognition.  777 

Neural representations of object-centered part relations 778 Many studies have examined how allocentric spatial information is represented neurally, but few 779 have explored the representations of object-centered part relations. Lescroart and Biederman 780 (2012) decoded the spatial arrangements of object parts in both ventral and dorsal cortices, but did 781 not test whether these were independent of other dorsal representations nor whether other visual 782 properties influenced decoding. Ayzenberg et al. (2021) identified ventral regions that coded for 783 part relations (as approximated by a skeletal model) independent of other visual properties, with 784 strongest coding in left LOC – a finding consistent with the RSA results of the current study. 785 However, they did not investigate whether such representations also exist in dorsal cortex and 786 could account for their effects. Finally, Behrmann et al. (2006) reported that patients with LOC 787 damage and object recognition deficits were impaired in perceiving part relations, but not the 788 features of object parts, suggesting a ventral locus for object-centered relations.  789 Consistent with these studies, we, too, found that part relations are represented in ventral cortex. 790 However, our data suggest that this information arises via input from dorsal cortex. We 791 documented functional connectivity between IPS and LOC, and showed that right pIPS mediates the 792 representation of part relations in ventral regions, and not the other way around. Indeed, across 793 both experiments, effective connectivity analyses revealed that part relations may be first 794 processed in IPS and then transmitted to ventral object regions. This finding is compatible with 795 research showing that visual object information reaches posterior parietal cortex 100 to 200 ms 796 
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earlier than ventral regions (Regev et al., 2018), as well as with studies showing that  topological 797 object properties may only become represented in the ventral pathway through top-down 798 connections (Bar et al., 2006; Wang et al., 2020). Crucially, studies also show that temporary 799 inactivation of posterior parietal regions impairs ventral object processing (Van Dromme et al., 800 2016; Zachariou et al., 2017). Altogether, our results in combination with these studies suggest a 801 causal role for dorsal cortex in ventral object processing in which dorsal cortex transmits object 802 information to the ventral pathway to support object recognition. 803 An interesting facet of our work is that our results differed by hemisphere. Specifically, we found 804 that coding of object-centered part relations was strongest in the right hemisphere across almost all 805 analyses. This finding mirrors the classic global precedence effect of the right hemisphere (Brighina 806 et al., 2003; Van Kleeck, 1989; Wasserstein et al., 1987), wherein global shape properties are most 807 often represented by the right hemisphere and local shape properties by the left. Although the 808 reasons for this effect remain controversial (Kimchi, 1992; Seghier & Vuilleumier, 2006), one 809 explanation suggests that the right hemisphere may be more sensitive to low spatial frequencies 810 (Iidaka et al., 2004; Peyrin et al., 2004). Consistent with this possibility patients with damage to 811 posterior parietal cortex show a deficit in perceiving low spatial frequency information, and, as a 812 result, global form (Kinsbourne & Warrington, 1962; Thomas et al., 2012; Warrington & Taylor, 813 1973). Other studies suggest that the right hemisphere global precedence may be related to 814 lateralization of object-based attention to the right hemisphere (Shomstein & Behrmann, 2006), 815 such that manipulating the focus of attention can enhance or disrupt the global precedence effect in 816 the right hemisphere (Kimchi & Merhav, 1991; Van Vleet et al., 2011).  817 Our results also uncovered a posterior-to-anterior gradient, especially evident in Experiment 2. 818 Although selectivity for part relations was found in both pIPS and aIPS, only right pIPS was able to 819 decode object category. Moreover, right pIPS exhibited the highest multivariate functional 820 connectivity with LOC, and its representation of object similarity was most consistent with a model 821 of part relations (i.e., medial axis skeleton). This gradient may reflect a common organizing 822 principle of the dorsal pathway. Regions of posterior parietal cortex exhibit greater sensitivity for 823 object properties in the service of recognition (Freud et al., 2017; Gillebert et al., 2015; Van 824 Dromme et al., 2016), and greater connectivity to ventral object regions (Janssen et al., 2018; 825 Takemura et al., 2016; Webster et al., 1994). By contrast, anterior parietal cortex shows greater 826 sensitivity to object properties that afford action, such as elongated axes (Chao & Martin, 2000; 827 Chen et al., 2017; Chen et al., 2016; Culham et al., 2003). Whereas right pIPS may be more involved 828 in computing part relations for the purpose of recognition, right aIPS may be more involved in 829 computing part relations to help coordinate grasping behaviors. Relatedly, we found greater 830 overlap between right aIPS and regions involved in representing allocentric relations and tools – 831 which are both critical for coordinating action. However, it is important to note that right aIPS did 832 show significant functional and effective connectivity with ventral regions. Given the research 833 described above, it is possible that that right aIPS may contribute to categorization for objects that 834 afford action, such as tools. Unfortunately, none of the objects used in Experiment 2 consisted of 835 tools, and only two of the object categories (out of five) could be considered manipulable. Thus, 836 future research should explore the degree to which dorsal cortex may differentially contribute to 837 object categorization for manipulable and non-manipulable objects.  838 

Object-centered relations and other dorsal representations 839 
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We found that IPS regions responded more to object-centered part relations than allocentric 840 relations, 3D shape, and tools, suggesting selectivity in these regions. However, our conjunction 841 analyses also revealed that object-centered relations may be represented along a continuum in 842 parietal cortex, with varying degrees of overlap with other dorsal properties, particularly, with 843 allocentric spatial relations. The overlap between object-centered and allocentric relations in 844 parietal cortex may reflect a broader organizing principle for spatial coding in dorsal cortex in 845 which reference frames are organized topographically. Recent evidence suggests that the dorsal 846 pathway represents visual information at different spatial scales ranging from single objects to 847 large, multi-object perspectives (Josephs & Konkle, 2020). This possibility is also consistent with a 848 rich literature on hemi-spatial neglect, in which right parietal damage impairs object perception on 849 the left side of space (Caramazza & Hillis, 1990; Corbetta & Shulman, 2011; Heilman & Valenstein, 850 1979). Depending on the scope of the damage, multiple reference frames are often affected 851 simultaneously, further suggesting that the representations overlap or abut (Halligan et al., 2003; 852 Medina et al., 2009). However, our data is also consistent with studies showing distinct 853 representations of object-centered reference frames (Vannuscorps et al., 2021a; Vannuscorps et al., 854 2021b). These representations are crucial for object perception and are most likely mediated by the 855 dorsal pathway (Freud & Ahsan, 2022; Taylor & Xu, 2022). Altogether, we suggest that such 856 representations are situated within a broader topographic map for spatial coding.  857 We found relatively little overlap between regions involved in representing part relations and those 858 involved in representing tools – with overlap occurring exclusively in aIPS. This finding is 859 consistent with the hypothesis formulated earlier, that coding of part relations in aIPS may be in 860 support of coordinating grasping behaviors. It is important to note that here we used a particularly 861 stringent definition of tool ROIs, wherein tools were contrasted with other manipulable objects 862 (Chen et al., 2018), and this decision may have minimized the degree to which we observed activity 863 related to object action affordances (since all stimuli afforded action). Moreover, by using objects 864 with elongated axes in the part-relations localizer (an important indicator of action affordance;  865 Chen et al., 2017), we may have further suppressed the degree to which regions representing part 866 relations overlapped with those representing tools. Future work may use a more direct object 867 affordance localizer (Freud et al., 2018; Snow et al., 2011) and a more variable stimulus set to 868 localize part relations.  869 Finally, extensive pilot work (Ayzenberg et al., unpublished data) suggested that depth regions in 870 parietal cortex could be reliably localized with the 3D and 2D shape stimuli used here. However, we 871 were unable to do so in current study – precluding conjunction analyses. Two runs of the depth 872 localizer may have been insufficient to identify regions involved in processing 3D shape, and/or 873 depth from shading (as used here) may be less consistently represented than depth from texture or 874 disparity (Georgieva et al., 2008). Given that the computation of depth structure in the dorsal 875 pathway is critical for object recognition (Farivar, 2009; Freud et al., 2020; Van Dromme et al., 876 2016; Welchman, 2016), future work is required to explore the link between regions subserving 877 part relations and 3D shape. 878 

The role of object-centered part relations in object recognition 879 Representations of object-centered part relations are thought to be critical for object recognition 880 because they describe an object’s global shape structure – a key organizing feature of most basic-881 level categories (Barenholtz & Tarr, 2006; Hummel, 2000; Mervis & Rosch, 1981). Such a 882 representation may even support rapid object learning in infancy when experience with objects is 883 
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minimal (Ayzenberg & Lourenco, 2021; Kraebel & Gerhardstein, 2006; Rakison & Butterworth, 884 1998). Yet, ANNs, the current best models of human object recognition, are largely insensitive to 885 the relations among object parts and require extensive object experience to categorize novel 886 objects (Baker et al., 2018; Baker et al., 2020). One potential reason for this deficit is that most 887 current ANNs exclusively model ventral cortex processes (Blauch et al., 2021; Schrimpf et al., 2020; 888 Yamins et al., 2014). Indeed, the few ANNs that model dorsal cortex focus on action or motion 889 related processes (Güçlü & van Gerven, 2017; Mineault et al., 2021). Here, we propose that the 890 dorsal pathway may play a key role in object recognition by computing object-centered part 891 relations and propagating these signals to ventral object regions. Right pIPS, in particular, may be 892 important for object recognition, in that its multivariate response was sufficient to decode object 893 category and it was well explained by an object recognition model that computes part relations (i.e., 894 a skeletal model). Importantly, we consistently found connectivity between right pIPS regions and 895 regions in ventral cortex, with evidence that right pIPS may even mediate the representation of part 896 relations in LOC. Thus, by incorporating the dorsal pathway with the ventral pathway, we may gain 897 a better understanding of the broader network that supports object recognition and the relative 898 contributions of each pathway.   899 
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