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Only a subset of the visual information that falls on our 
retinae is perceived or remembered, or affects behaviour. 
Many visual and cognitive factors combine to determine 
what visual events are prioritized. To what degree are 
they reflected via common neural correlates? How  
are they combined and how are they distinguished?

In this Review, we highlight similarities and differ-
ences in how distinct forms of visual priority coding 
affect several metrics of neural population activity at 
different stages of visual processing. By definition, all 
forms of priority coding have similar behavioural effects, 
to the extent that they prioritize some stimuli over oth-
ers. However, they are in many ways diverse, operating 
on timescales that range from tens of milliseconds to 
months, depending on factors that range from proper-
ties of images to those that are cognitive in origin, and 
operating on a range of visual features from low-level 
features, such as orientation, to high-level concepts such 
as object category.

In principle, each form of prioritization could be 
associated with a unique neural correlate. There are 
some advantages to such a scheme, including ease in dis-
tinguishing whether a change in neural representation 
came from learning or salience, for example. Indeed, 
there are notable differences in the neural correlates of 
different forms of priority coding. However, perhaps 
more remarkable are their similarities: the vast number 
of studies searching for the neural correlates of different 
forms of priority have uncovered only a modest number 
of neural correlates. This leads to the tantalizing hypoth-
esis that a small number of mechanisms might underlie a 
broad range of behaviours guided by prioritized stimuli.

The goal of this Review is to determine whether the 
similarity between the behavioural effects of different 
forms of prioritization reflects generalized principles for 
priority coding that are also reflected as commonalities 
across neural coding schemes, neural circuits and/or com-
putational mechanisms. To answer these questions, we  
highlight insights from new data analysis methods that  
focus on subspaces of neural population activity and 
that have the potential to uncover general relationships 
between priority coding, holistic measures of neuronal 
population activity and behaviour. We propose that 
the visual system uses partially overlapping subspaces 
of neural activity to combine different types of prior-
ity into a unified priority signal while also retaining the 
ability to differentiate between them. We describe how 
this mechanism may enable different priority signals to 
support flexible behaviour through flexible, functional 
communication with downstream neurons involved in 
decision-making. Finally, we conclude by describing 
what we regard as the next important steps towards 
understanding how the brain prioritizes incoming visual 
information, including the experiments, data analysis 
techniques and models through which the behavioural 
implications of different forms of priority coding on 
populations of neurons can be compared.

Forms of priority coding
Here, we use the term ‘behavioural priority signatures’ to 
refer to the behavioural outcomes of tasks that involve 
prioritizing some stimuli over others, and we refer to 
that act as ‘prioritization’. Prioritization can be reflected 
as an increase in behavioural performance, a decrease in 
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reaction time and/or an increase in the time spent engag-
ing with a stimulus. Prioritization is crucial in all species 
and systems, ranging from honeybees, which selectively 
respond to visual stimuli that are both salient and asso-
ciated with reward1, to elephants, which learn to imitate 
the voices of the elephants or humans most important to 
them2. The ubiquity of these behaviours has led to much 
discussion about whether different forms of prioritization 
should be thought of as part of the same category or dif-
ferentiated. Rather than focusing on definitions of terms 
or categories, we focus here on whether different behavi-
oural priority signatures are mediated by overlapping 
neural correlates. In terms of neurophysiological inves-
tigation coupled with behaviour, the best-studied behavi-
oural priority signatures concern the visual system of 
non-human primates. Therefore, we highlight five exam-
ple behavioural priority signatures in the primate visual  
system selected on the basis of their depth of explanation 
and their range of investigation across brain areas.

The visual cortex of primates contains a hierarchy of 
brain areas. In earlier visual areas, beginning with the 
primary visual cortex (V1), receptive fields are small and 
neurons respond primarily to low-level features such 
as orientation, colour or depth3. From there, response 
selectivity in the ventral stream progresses to mid-level 
features (such as texture and curvature in V4)4 and to 
higher-level properties that enable object recognition in 
the inferotemporal cortex (IT)5.

The first three behavioural priority signatures that 
we consider — perceptual learning, goal-directed visual 
attention and visual salience — are often studied at ear-
lier stages of the visual system, such as in V1, V2 and 
V4, because their spatial specificity suggests that they are 
mediated by neurons with small receptive fields such as 
those in these areas. However, all three have been asso-
ciated with modulations in every visual area in which 
they have been studied. Perceptual learning improves 
observers’ ability to discriminate specific, well-practised 
stimuli over periods of weeks or months, leading to 
a prioritization of practised stimuli at practised loca-
tions in visual space6–21 (Fig. 1a). Goal-directed visual 
attention affects the activity of neurons throughout the 
visual pathway and enables observers to flexibly prior-
itize different locations, features, objects or other parts of 
a visual scene and, critically, to filter out task-irrelevant 
information (for reviews, see reFs22–26) (Fig. 1b). Visual 
salience enables certain regions of complex images to be 
prioritized because properties of these regions are intrin-
sically attention-grabbing. Psychophysically, salience is 
commonly studied in three ways. The first is by compar-
ing the precepts of stimuli that do and do not ‘pop out’, 
depending on whether they differ from the background 
in visual features7–29 or in onset time30,31 and can there-
fore be prioritized through bottom-up mechanisms, 
or whether they fit a search template29,32,33 (Fig. 1c). The 
second way to study visual salience processing is using 
visual search tasks in which observers search for targets 
that vary from distractors by different amounts29,34,35. 
Third, free-viewing paradigms can be used in which 
the salience of an image is quantified on the basis of the  
regularity with which patterns of gaze fixations are  
consistent across participants36.

The next two behavioural priority signatures that we 
examine — image memorability and visual novelty —  
are most often linked to processing at higher stages of 
the visual system (such as IT) because they are asso-
ciated with higher-level, object-centric properties and 
rapid, long-lasting plasticity. Image memorability ena-
bles some stimuli to be prioritized because properties of 
those images are intrinsically more easily remembered. 
For example, in a visual recognition memory task, par-
ticipants are asked to view novel and repeated images 
and report whether they have seen them before (Fig. 1d). 
In these studies, some images are found to be more 
memorable than others37–44. Investigations of the prop-
erties that affect image memorability have implicated 
higher-level attributes more strongly than low-level fea-
tures, including object type (for example, faces are typ-
ically more memorable than nature scenes) and object 
atypicality (an unusual chair, shaped like a hand, tends 
to be memorable)37,40. Images are also prioritized when 
they are novel, leading to a preference by human infants, 
monkeys and other animals to look at images that are 
unlike those encountered before, called preferential 
looking45–47 (Fig. 1e). In addition to this implicit report 
of visual novelty, novelty can be measured by explicit 
reports of whether an image is repeated or novel in a 
visual recognition memory task48,49. Whereas image 
memorability is associated with the prioritization of 
more memorable images across a set of (all novel) 
images, novelty measured by preferential looking refers 
to the prioritization of novel over repeated stimuli.

Neural correlates of priority coding
Despite their differences, the behaviours depicted in 
Fig. 1 all involve prioritizing a subset of visual infor-
mation. Several non-mutually exclusive neural cor-
relates have been put forward for how priority coding 
might manifest in the brain (Fig. 2). Here, we define a 
neural correlate as a manifestation of neural population 
activity that, when decoded, could result in stimulus 
prioritization.

Proposals for priority coding. The simplest proposed neu-
ral correlate underlying priority coding is magnitude vari-
ation, whereby a particular image evokes more vigorous 
population responses when it is prioritized31,50–53 (Fig. 2a). 
The second proposal is reflected as a change in the magni-
tude or structure of correlated trial variability (also termed 
noise correlations, spike count correlations or rSC), which 
reflects shared variability in responses to repeated pre-
sentations of the same stimulus, and could change the 
fidelity with which information about a prioritized object 
can be decoded by downstream neurons54 (Fig. 2b). The 
third proposal is mathematically similar to the second but 
arises from a different source. This proposal is restricted 
to tasks that require grouping multiple stimuli together to 
extract a parameter of interest while disregarding other 
differences between them, for example, object identifi-
cation, which can be thought of as grouping together all 
the images containing the same object while ignoring 
variation in the details with which those objects appear 
such as their spatial position, size and background con-
text. In tasks like these, ‘nuisance’ variability refers to the 

Receptive fields
The restricted region of visual 
space within which changes  
in the visual stimulus lead to 
changes in a neuron’s firing 
rate response.

Ventral stream
Also called the ‘form 
processing’ or ‘what are you 
looking at?’ pathway owing  
to its association with object 
identification. includes primate 
visual brain areas of visual 
cortex V1, V2, and V4 and  
the inferotemporal cortex.

Search template
Defines the combined set  
of features that are sought  
in a visual search task.

Population responses
snapshots of the spiking 
activity of a collection  
of individual neurons in 
response to a single trial  
in one experimental condition.

Trial variability
Variability in the responses  
of an individual neuron across 
repeated instances of the same 
experimental conditions and 
visual stimulus.

Noise correlations
The degree to which trial 
variability is correlated 
between different units  
in response to repeated 
presentations of the same 
visual stimuli and other 
experimental conditions.
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dispersion of neural responses across different stimuli 
in a group. The third proposal is reflected as changes in 
correlated nuisance variability, which reflects correlations 
between neurons in their responses to different stimuli 
that constitute noise in a grouping task, or equivalently, 
stimulus-to-stimulus response variability55 (Fig. 2c).  

A fourth proposal differs from the others in that it operates 
by changing the way that a fixed neural representation is  
read out or decoded by a downstream population, where as 
the others operate by changing neural population activity  
in the brain area that represents the relevant visual 
feature or object56 (Fig. 2d). A fifth proposal suggests that 
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Fig. 1 | Forms of priority coding. Each panel depicts one behavioural prior-
itization signature illustrated with one representative psychophysical exam-
ple of prioritization. a | Perceptual learning involves extensive training on a 
task such as discriminating subtly different stimulus orientations at a specific 
location (high priority). Performance improvements do not generalize to 
untrained locations (low priority). The plot shows how the psychophysical 
thresholds at the trained location (green circles) decrease as a function of 
training session number and are largely retained following breaks in training 
(hash marks). By contrast, discrimination thresholds at an untrained location 
(yellow circle) remain high. b | Goal-directed attention is studied using  
a Posner cuing paradigm, which includes two repeated, flashing stimuli and a  
cue that indicates the location at which to expect a stimulus change (high 
priority). Changes also occur at the uncued location (low priority) on a small 
fraction of trials. Shown is a psychometric curve, which is shifted to the left 
for stimuli at the cued location, indicating better performance at detecting 
changes there than for the uncued location. c | Visual salience can be studied 
by determining how long it takes for participants to find a stimulus (a green 

cross) embedded in a background of distractors. Stimuli with high salience 
differ by only one feature and pop out (high priority), and search time remains 
independent of set size. Stimuli with low salience differ by one of multiple 
features (low priority), and search time increases as a function of the number 
of distractors. d | Image memorability can be studied in a recognition memory 
paradigm in which participants view one image per trial and report whether 
it is novel or repeated. Image memorability is scored 0–1 and corresponds to 
the fraction of participants that remember seeing an image when it is 
repeated. Images with high memorability (high priority) are better remem-
bered than images with low memorability37,142 (low priority). e | Visual novelty 
can be studied as the amount of time that a monkey spends free-viewing 
novel images (high priority) as compared to repeated images (low priority). 
FP, fixed point. Panel a adapted from reF.70, Springer Nature Limited. Panel b 
adapted from reF.90, Springer Nature Limited. Panel c adapted with permis-
sion from reF.27, Elsevier. Panel d adapted from reF.142, CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/). Panel e adapted with permission 
from reF.45, National Academy of Sciences.
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a task such as object position 
or size in a task that requires 
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prioritization is modulated through changes in synchrony 
(sometimes inferred by measuring coherence) between 
different subgroups of neurons in a population on very 
fast time scales, potentially mediated by oscillatory  
activity that is shared between populations57,58 (Fig. 2e).

Most recently, a sixth overlapping but conceptually 
distinct framework for thinking about priority coding 

has emerged around the subspaces of neural popula-
tion space, which is defined as the space in which the 
response of each simultaneously recorded neuron rep-
resents one dimension59–61. As a simple illustration, one 
can envision a population of two neurons that are exact 
copies of one another and, as a consequence of their 
overlap, the responses of these two neurons occupy a 
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Fig. 2 | Proposals for priority coding. Each panel depicts one proposed neural correlate of priority coding, shown in the 
context of a task that requires a two-way classification (such as ‘is this image an A or a B?’, where A and B can have different 
priority statuses, such as high-priority attended and low-priority unattended stimuli). Each plot depicts a subset of two 
dimensions that exist within a high-dimensional space where each axis is the response of one neuron. Shown are hypo-
thetical 2D probability distributions, with each colour representing one class of responses. Also shown are projections 
along a linear-decoding axis (indicated by the dotted line) perpendicular to the decoding axis; the decoding axis also 
reflects the threshold for the classification. All six proposals operate by increasing the ability to discriminate between stim-
ulus A and B by increasing the separation between the grey and red distributions in the high-priority versus low-priority 
condition. What differs between the proposals is how this end point is achieved. These proposals are not mutually exclu-
sive and multiple types may contribute to any one priority coding behaviour. a | Magnitude coding: prioritization follows 
from a more vigorous population response to that stimulus. b | Correlated trial variability: prioritization follows from a 
change in the magnitude or structure of the variability shared across neurons in response to repeated presentations of the 
same stimulus in a manner that affects how information is decoded downstream. c | Correlated nuisance variability: similar 
to correlated trial variability, but prioritization results from a change in correlational structure between neurons in their 
responses to different stimuli. d | Optimized decoder: prioritization follows from increasing the efficacy of a downstream 
decoder as opposed to changing the population response itself. e | Synchrony and coherence: prioritization follows 
changing synchronous activity on very fast timescales, possibly through sharing of oscillatory activity. f | Communication 
subspace alignment: prioritization follows from a reorganization in the population response in a manner that maintains 
the same total information about a stimulus but changes how that information aligns with the communication subspace.
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neurons on fast timescales (less 
than 10 ms). Often measured as 
the coherence between activity 
in two areas in a particular 
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dimensionality of one as opposed to two; for example, no 
information would be lost if one of those neurons were 
eliminated from the population. In this example, the 
perfectly correlated activity of the two neurons reflects 
the encoding subspace (weights of (1,1)), and the ‘null 
space’ not occupied by the population is defined by the 
perpendicular direction, in which the two neurons are 
anticorrelated (weights of (1,–1)). As the numbers of 
neurons in the population grows, the principle remains 
similar, and the subspace dimensionality is defined by 
the different types of activity that are elicited by the 
population.

These same ideas are used not only to discuss the 
visual information encoded by a population of neu-
rons but also the information communicated from one 
brain area to the next. Indeed, simultaneous recordings 
from multiple neurons in multiple brain areas sug-
gest that the information conveyed from one area to 
the next is a subset of the total information reflected 
in that brain area59,60,62,63. The communicated infor-
mation is described as existing in a ‘communication 
subspace’, whereas information that is not communi-
cated is described as existing in the remaining null or 
private space. The communication subspace is influ-
enced not only by anatomy but also by the weighting 
of inputs from one brain area to the next. This idea can 
be extended to account for priority coding, leading to 
a sixth proposed neural correlate: that priority coding 
is achieved by affecting the extent to which prioritized 
visual information aligns with the communication sub-
space, while maintaining the same total information 
about a stimulus (Fig. 2f). This proposal can be distin-
guished from the alternative that is implied by many, 
although not all, of the other proposals, in which prior-
ity coding operates by modulating the total information 
about a stimulus in the visual cortex.

When considering these different proposals, it is 
important to understand that the same behaviour may 
manifest in different ways in different brain areas. For 
example, magnitude coding in a given brain area is con-
sistent with but does not necessarily imply the decoded 
transformation of any of the other proposals reflected 
in the input to that brain area. Therefore, it is important 
to measure neural activity at multiple levels of the visual 
hierarchy when investigating the neural correlates of 
priority coding.

Challenges in comparing types of priority coding. 
The most obvious challenge in drawing comparisons 
between the different forms of priority coding in Fig. 1 
is that, because of varying traditions and concerns in 
distinct subfields, they have typically been investigated 
very differently. For example, if an experiment does not 
measure correlated variability in a particular brain area 
(Fig. 2b), it will not identify it as a neural correlate even if 
it exists. Very few studies64–66 have investigated correlated 
trial variability at higher stages of the ventral pathway 
(such as in the IT). Similarly, very few studies67,68 of ear-
lier stages of the ventral visual pathway have investigated 
nuisance variation (Fig. 2c) in the context of grouping 
tasks that require a participant to abstract a variable of 
interest (such as object identity) across different images. 

Given the differences in the way various forms of pri-
ority coding have been studied, the similarities in the 
neural correlates of the various forms of priority coding 
reported thus far are typically more informative than the 
differences.

Behaviour as a constraint for evaluating candidate 
priority-coding schemes. A remarkably high number of 
neural coding schemes have been implicated in priority 
coding (Fig. 2). How do we move beyond the myriad 
of observations that prioritization during behaviour  
X corresponds to a change in candidate neural correlate Y?  
That is, how do we distinguish putative neural corre-
lates that are possible candidates for having causal links to 
behaviour from those that are epiphenomena? Building 
on the classic proposals of Parker and Newsome69,  
modern insight has been gained through focusing on 
behaviour. Although all forms of priority coding are, 
by definition, related to behaviour in at least a pairwise 
manner (for example, more of both behaviour X and 
neural correlate Y occur in condition A than in condi-
tion B), a more powerful demonstration would involve 
evaluating the degree to which systematic variation in 
behaviour correlates with systematic variation in candi-
date neural correlates. Focusing on behaviour has been 
important for progress in understanding several of the 
forms of priority coding that are highlighted in Fig. 1.

In the case of perceptual learning, a compelling link 
between changes in the properties of individual neu-
rons and the prioritization that happens with learning 
was difficult to come by for quite some time. Studies 
that focused on single neurons in the early visual cor-
tex reported diverse effects that sometimes included 
increases in overall mean firing rate in response to the 
prioritized stimulus and various other neural correlates 
in many areas of the visual cortex. However, these stud-
ies did not identify a systematic relationship between 
these changes and the behavioural improvements with 
learning56,70–79 (although see reF.80). One study, focused 
on motion perception, made an illuminating step for-
ward by reporting that, although there were no detect-
able changes in the activity of individual neurons in the 
visual cortex (the middle temporal area) with learning, 
there were changes in the response of neurons in a down-
stream projection area implicated in decision-making 
(the lateral intraparietal cortex) that systematically 
reflected the amount of prioritization during learning56. 
These results suggest that prioritization happens by opti-
mizing the ability of lateral intraparietal cortex neurons 
to preferentially weigh and thus decode inputs from the 
most sensitive middle temporal area neurons (Fig. 2d). 
More recent investigations recording populations of 
neurons have found correlates of priority coding within 
the visual cortex itself (typically mid-level areas such as 
V4) reflected as changes in the magnitude of correlated 
trial variability between neurons (Fig. 2b). The magnitude 
of correlated trial variability in the medial superior tem-
poral area or area V4 was reduced systematically with 
learning74,81, and the magnitude of correlated variability 
was strongly related to behavioural performance on a 
day-to-day basis74. An exciting possibility is that changes 
in correlated variability might lead to changes in the way 

Weights
Used to determine the output 
of a linear decoder, computed 
as a weighted sum of the 
population response on a 
single trial (for example, 
output = weight 1 × neuron 1 
response + weight 2 × neuron 2 
response…).
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inputs from the visual cortex are read out by association 
areas82,83.

Goal-directed visual attention is perhaps the most 
extensively studied form of priority coding, and it has 
been associated with changes in a staggering variety of 
measures of neural activity in almost every visual and 
visuomotor brain area, including trial-averaged firing 
rates50,52,53,84–88 (Fig. 2a), shared variability between pairs 
of neurons (Fig. 2b) in the same brain area74,89–103 and 
in different brain areas98,104–106, and synchrony, which 
is sometimes measured as coherence57,58,106–124 (Fig. 2d). 
The number of studies that have directly linked those 
changes with behaviour is much smaller. Given that visu-
ally guided behaviours are thought to be mediated by 
large numbers of neurons in multiple brain areas, it is 
perhaps unsurprising that the measures that are most 
reliably associated with behaviour are those that encom-
pass the population (such as the magnitude of correlated 
variability or synchrony74,125,126). Below, we return to the 
topic of how these results relate to new efforts to under-
stand how priority coding changes the subspaces of 
neural activity in which visual stimuli are encoded and 
communicated (Fig. 2f).

Magnitude coding (Fig. 2a) has been implicated in 
the other priority coding behaviours depicted in Fig. 1. 
Visually salient, pop-out stimuli modulate the magni-
tude of responses in the early visual cortex127,128 (but 
see reF.129) as does visual search, which involves a con-
fluence of bottom-up processes (‘what are you looking 
at?’) and top-down processes (‘what are you looking 
for?’)107,109,130–136. A recent study137 used a causal manipu-
lation to demonstrate that reversible inactivation of the 
parietal cortex reduces salience coding in prefrontal neu-
rons and reduces the ability to predict eye movements in 
a free-viewing paradigm from models that predict the 
salience of images138–141.

Magnitude variation has also been linked to image 
memorability: more memorable images are reported to 
evoke IT population responses that are about 20% larger 
than those evoked by less memorable images, and con-
tinuous changes in magnitude coding strongly corre-
late with continuous changes in image memorability142. 
Similarly, image novelty is also reflected in the IT 
through a magnitude coding scheme as novel stimuli 
evoke a more vigorous IT response than do familiar 
stimuli48,51,143–145. Although this phenomenon is often 
referred to as ‘repetition suppression’ to emphasize its 
relationship with familiarity memory, it could also be 
titled ‘novelty enhancement’ to emphasize its relation-
ship with priority coding (although whether the under-
lying neural mechanisms that shape this phenomenon 
are enhancing or suppressive remains unclear). Indeed, 
the extent of this phenomenon in the hippocampus pre-
dicts continuous changes in novelty behaviour assessed 
by preferential looking45 and, over timescales of minutes, 
its magnitude aligns with behavioural reports of nov-
elty versus familiarity48. Consequently, it too passes the 
benchmark of accounting for continuous behavioural 
variation.

Synchrony on the timescale of a small number of mil-
liseconds (sometimes measured as coherence) has been 
implicated in various behavioural priority signatures.  

It has been most broadly studied in the context of atten-
tion: increases in attention (and concomitant changes 
in performance and reaction time) are associated 
with enhanced synchrony or coherence57,58,106–124,126,146. 
Enhanced synchrony has also been associated with sali-
ence in the context of visual pop-out stimuli147 and with 
visual memory148–153.

In summary, although many neural correlates of pri-
ority coding have been identified (Fig. 2), to date, only 
a few have met the bar of illustrating a systematic rela-
tionship with behaviour. A crucial focus of future work 
should be determining whether other correlates, such 
as the others highlighted in Fig. 2, can meet this bar and 
whether multiple behavioural priority signatures are 
supported by the same underlying mechanism.

A unified yet distinguishable code
Recently, a framework for thinking about neural coding 
has emerged62,83,99,154–170 around examining the subspaces 
of neural population space (defined by the response of 
each neuron as one dimension) in which visual informa-
tion is encoded or communicated between brain areas. 
These ideas have delivered insight on many aspects of 
neural coding and given rise to fresh ideas related to 
priority coding.

The first insight is that, in many tasks, most of the 
relevant population activity exists in a much lower 
dimensional subspace than the theoretical upper bound. 
Although the information represented in any given brain 
area has the potential to have a dimensionality equal to 
the number of neurons it contains (for example, many 
millions5 in primate V1, V2, V4 or IT), emerging evi-
dence suggests that, in various tasks and in response 
to various stimuli, the brain often uses neuronal pop-
ulation activity that resides in much lower-dimensional 
subspaces62,83,99,154–170. Priority coding seems to affect 
particularly low-dimensional subspaces. For example, 
attention seems to modulate trial-to-trial variability 
along a very small number of dimensions (approxi-
mately one74,171,172). Similarly, in the IT, the mapping of 
neural activity to novelty behaviour is linearly decodable 
(one-dimensional)48,173.

The second insight is that the subspace in which pri-
ority is associated with response modulations seems to 
be configured such that priority does not dramatically 
affect representations of visual identity. Representations 
of identity are thought to be largely reflected as pop-
ulation spike patterns or, equivalently, as population  
vector direction5 (Fig. 3a). By contrast, magnitude cod-
ing implies a modulation of population vector mag-
nitude and, when priority modulations multiplicatively 
scale firing rates, they change magnitude without 
changing vector direction (Fig. 3a). Magnitude modu-
lations are reported to be approximately multiplicative  
for attention50,53,174–177 and novelty178,179 (although see 
reFs180,181).

This insight provides a potential explanation for why 
overall modulations of the population response can be 
relatively large yet have minimal impact on choices in 
perceptual tasks48,182. The subspace hypothesis is not 
unique in hypothesizing a behavioural effect that is 
not a direct consequence of the magnitude of response 

Coherence
A measure of the similarity  
of oscillatory activity between 
two brain regions.

Population vector direction
The position of a population 
response vector in an 
N-dimensional space (where N 
equals the number of neurons) 
after normalizing for 
population vector length  
(or magnitude).

Multiplicatively
Modulations that impact  
a neuron’s response by 
multiplying it by a factor.
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modulation57,58 (although some of the simplest popula-
tion codes, such as magnitude coding, do not). However, 
viewing population activity in terms of subspaces that 
correspond to particular visual or cognitive variables of 
interest provides a unifying intuition about what types  
of modulation — those aligned with behaviourally 
relevant variables — should affect behaviour.

A third insight suggests that different forms 
of prioritization affect partially overlapping sub-
spaces of neural activity. This insight begins with 
the observation that many forms of priority coding 
are associated with changes in the grand mean firing 
rate45,48,50–53,84–88,124,127,128,130–136,143–145, which implies that 
their population representations are at least partially 
overlapping when using a ‘magnitude’ linear decoder 
whose weights are equal for all neurons [1,1,1, …] 
(Fig. 3b). This means that the combination of different 
types of priority can be accessed in a simple way: by 
monitoring population response magnitude. However, 
this, in turn, presents a puzzle: the brain must have 
ways of differentiating diverse forms of priority cod-
ing, for example, disambiguating whether an incoming 
stimulus is prioritized as a consequence of novelty or 
goal-directed attention — how does it manage to do this?

The answer is that the overlap between the popula-
tion responses associated with different forms of priority 
is only partial: optimally weighted linear decoders do not 
align precisely with the magnitude axis (that is, by affect-
ing all neurons equally) but they are also not orthogonal 
to it. This is supported by evidence in V4. There, vari-
ables such as contrast, adaptation, spatial attention and 
feature attention all affect magnitude coding; however, 
at the same time, the neural representations for each of 
these variables lie in a low-dimensional subspace, and 
the multiplicative scaling of a given neuron’s response 
by one of those variables only weakly correlates with the 

extent to which it is modulated by the others172. In other 
words, there is great neuron-to-neuron heterogeneity 
in the extent to which response magnitude is affected 
by any particular form of priority coding. As a result, 
although the subspaces that are engaged by the popu-
lation responses that are modulated by these different 
variables are distinct, they are partially overlapping172.

The suggestion of partial overlap of the different 
subspaces that are engaged in diverse forms of priority 
is supported by evidence from a study that compared 
neural responses in the IT with the ability of monkeys 
to distinguish changes in image novelty from changes 
in image contrast173. The study revealed that, although 
changes in both contrast and novelty affected the overall 
magnitude of the population response, a novelty decoder 
that classified responses along a dimension that fell 
orthogonal to the dimension along which population 
responses changed according to contrast could account 
for the mapping of IT neural responses to behaviour173 
(Fig. 3b). In principle, all that is required to differentiate 
diverse priority variables is for their effects on popula-
tion responses to be at least partially non-overlapping 
with one another. This would be expected when individ-
ual units have heterogeneous sensitivities for the multiple 
factors that modulate the population response172,183,184.

As a final insight, functional communication between 
brain areas might be altered without changing the sub-
space of activity that is shared between two populations 
(for example, by changing the nature or amount of 
information that is aligned with a fixed subspace). One 
study supported this idea by demonstrating that shift-
ing attention between opposite hemifields has negligible 
effects on both the amount of information encoded in 
the visual cortex and the subspace of population activity 
that related activity in the visual cortex to premotor neu-
rons or the animals’ behaviour99. Instead, attention acts 

a b

Population
magnitude
(priority)

Population 
pattern
(identity)

Novelty

Magnitude

Contrast

Familiar,
high C

Novel,
high C

Novel,
low C

Familiar

Novel

Familiar,
low C

Fig. 3 | subspaces for priority coding. a | Illustration of the complementary coding schemes reflected as changes in 
population response patterns (to reflect, for example, changes in image or object identity) versus changes in population 
response magnitude (to reflect, for example, priority). b | Schematic of the 2D linear subspace of responses in the infero-
temporal cortex recorded while monkeys reported image novelty at the same time as ignoring randomized changes in 
contrast173. Although information about novelty (novel versus familiar) and contrast (C; high versus low) overlaps with the 
magnitude decoder (that is, the vector with weights of [1,1,1,1…]), a novelty decoder orthogonalized to contrast could 
account for the mapping of inferotemporal cortex neural responses to the monkeys’ behavioural patterns.

Decoder
A single (typically linear) axis  
in a high-dimensional space, 
most often created to extract  
a particular type of information 
(such as ‘is this image an A or a 
B?’) from a neuronal population.

Adaptation
Changes in the response  
of an individual (behavioural)  
or neuron with repeated or 
prolonged exposure to a 
stimulus.

Units
individual neurons or groups  
of a few neurons whose spiking 
activity is recorded typically  
via extracellular techniques. 
Measures of unit activity  
may or may not reflect the 
responses of a single neuron.

Nature reviews | NeuroscieNce

R e v i e w s



0123456789();: 

primarily to change how neural representations of visual 
information are aligned with relatively fixed decoding 
strategies, and it seems to change the information shared 
between visual and premotor areas without changing 
the dimensionality of the communication subspace61,185. 
Understanding how changes in the alignment of a popu-
lation response with the communication subspace man-
ifest at the level of the population and are reflected by 
the other mechanisms depicted in Fig. 2 is an important 
avenue for future work.

Putting it all together and allowing for a bit of spec-
ulation, the insights described above suggest that the 
visual system combines different types of priority into a 
unified priority signal that is strongly related to the pop-
ulation response magnitude (Fig. 3a). At the same time, 
these different types of priority remain distinguishable 
from one another as a consequence of their reflection in 
low-dimensional linear subspaces that are only partially 
overlapping (Fig. 3b) owing to heterogeneity across indi-
vidual neurons in their sensitivities to different types  
of priority modulation. Although priority modulations of 
population responses seem to be sufficient in size to affect 
the types of downstream processing that are sensitive to 
population response magnitude (such as memory), they 
also seem to be configured to minimize interference 
with types of representations that are reflected primar-
ily as patterns of spikes (such as object identity) by way 
of acting approximately (albeit imperfectly) multiplica-
tively (Fig. 3a). Finally, priority coding associated with 
cognitive processes that enable flexible behaviour, such 
as goal-directed attention, may operate by changing the 
information that is aligned with fixed subspaces (Fig. 2f).

A corollary to the idea that the magnitude axis is pref-
erentially read out to guide at least some forms of visual 
behaviour is that changes in mean correlated variability 
or in the shape of the distribution of correlated nuisance 
variability can have big changes on the accuracy of the 
information that is communicated to decision-making 
areas. Many studies have observed that spike count 
correlations between neurons that encode prioritized 
information are low54, even when the correlation 
changes associated with priority coding have negligible 
impact on the information that could be gleaned using 
a decoder optimized for the stimulus and task54,186–188. 
Perhaps the negligible change in the amount of informa-
tion represented in the population as a whole is adaptive: 
changing the mean correlated variability (as opposed to 
more complex, specific or higher-dimensional changes 
to the structure of the covariance matrix) is a way to 
change the signal-to-noise ratio of the visual informa-
tion projected along the magnitude coding axis while 
preserving currently irrelevant information for future 
action or memory.

Magnitude coding is clearly not the whole story. 
Deviations from magnitude coding are plentiful and 
clearly important. It is those deviations that enable sen-
sory signals to be distinguished from cognitive signals 
or different forms of priority coding to be distinguished 
from each other (Fig. 3b). However, the low-dimensional 
structure of neuronal population activity may impose 
limits on the number of those features or cognitive pro-
cesses that can be distinguished. An exciting direction 

for future work will be to understand the relationship 
between these limits on neural coding and the perceptual 
and cognitive limitations of humans and other animals.

Perhaps the greatest contribution of the subspace 
framework that we have outlined here is its ability to 
unify many observations and provide intuitions that 
can guide future experiments. It rarely comes in direct 
conflict with other theories but, nonetheless, pro-
vides distinct insights. For example, the principle of 
divisive normalization provides an explanation for the 
scaling of responses associated with several forms of 
normalization, including visual attention175,189–191. The 
normalization model allows for the response magnitudes 
of different neurons to be modulated to varying extents 
by attention. Thus, it implies that attention can change 
the direction of the population response vector. The com-
plementary contribution of the subspace framework is 
that it provides powerful geometric intuitions about the  
quantities of interest (the dimensions along which  
the modulation occurs) that can be visualized, which in 
turn facilitates the conceptualization of how the neural 
correlates of priority coding are connected across diffe-
rent experiments. The insights of the subspace frame-
work are consistent with traditional ways of thinking 
about population coding, but the subspace framework 
has already begun to dramatically affect experiment 
design and new theories about neural coding.

Merging network models
There is a long history of modelling prioritization from 
diverse perspectives that leverage data from behavioural, 
physiological and human imaging studies50,53,175,192–194. 
Here, we highlight two largely non-overlapping types of 
models because we see their merging as a crucial path 
towards understanding the mechanisms underlying pri-
ority coding. The first category uses as its core a long 
history of biophysically realistic circuit models82,195–204. 
The key constraints on these models are measurements 
of variability, including the variability of single neurons, 
changes in shared variability mediated by the balance 
between excitation and inhibition, noise correlations 
within and between brain areas, and the dimension-
ality of noise within each area. These models are also 
constrained by network properties that arise from 
hetero geneous connectivity — for example, the strong 
relationship between the extent to which a neuron is 
modulated by spatial attention and the extent to which 
it exhibits divisive normalization when multiple stimuli 
are placed within its receptive field100,106,189,205. Recent 
observations indicating that only a low-dimensional sub-
space of information is shared between areas59,83 will pro-
vide key constraints on future models of this type. The 
strength of this body of work is its connection to circuit 
mechanisms and its ability to account for observations 
about how different measures of variability are changed 
by processes such as attention and perceptual learning. 
The limitation is that these model networks include only 
limited representations of visual information and cannot 
perform tasks for which prioritization is necessary.

The second category of models uses deep artificial 
neural networks (DANNs) to model transformations 
across different stages of the ventral stream. This effort 

Linear subspaces
given a population of  
N neurons that define a 
population dimensionality with 
an upper bound of N, a linear 
subspace is a subset of the full 
space with dimensions M < N.

Covariance matrix
Describes the covariation 
between different neurons 
across visual stimuli and 
repeated trials.

Divisive normalization
A model that describes the 
responses of an individual 
neuron or population as a 
combination of the image 
within its ‘classic’ receptive 
field, adjusted by the 
combined response of  
other neurons.
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builds on foundational work demonstrating that, when 
DANNs are trained to perform object categorization, 
the functional organization of their different layers 
bears considerable resemblance to the representations 
of images and object identity in different brain areas 
as measured by single-unit recordings in the primate 
brain206,207 (reviewed elsewere208). Extending these 
results, one study determined that one form of priority 
coding emerges from these same networks: image mem-
orability variation142. Like the brain, the IT-analogous 
layers of DANNs trained to categorize objects respond 
more vigorously to some images than to others, and the 
magnitudes of the population responses in these layers 
are correlated with how memorable humans find those 
images. The strength of this type of modelling approach 
is that these models can be used to predict the responses 
of individual neurons or a population to complex, natu-
ral scenes (a model property often referred to as ‘image 
computability’). Consequently, such models have proved 
effective in helping our understanding of how the brain 
deals with one type of noise — nuisance variation — in 
the context of tasks that require extracting information 
about one type of variable, such as object identity, while 
ignoring stimulus-induced changes in other types of 
irrelevant information such as changes in object posi-
tion, size or background context. For example, these 
models do a reasonable (albeit imperfect) job of reca-
pitulating the hierarchical transformation of object 
identity representations from a highly inaccessible and 
nonlinear format at earlier stages (such as in the V1) to 
a more accessible and linear format at later stages (such 
as in the IT), as well as predicting how individual neu-
rons at different stages will respond to arbitrary natu-
ral images206,207. The limitation of these models is that 
they are ‘noiseless’ insofar as they lack trial variability 
— once they are trained and their weights fixed, they 
respond in the exact same way on different trials with the 
same stimulus, unlike the brain. As a result, they cannot 
recapitulate the changes in noise correlations (Fig. 2b)  
associated with attention and perceptual learning.

Although considerable modelling work remains to 
be done, our current understanding sheds some insight 
into the mechanisms that might support a unified yet 
distinguishable priority code. Namely, the observation 
that most of the variance in the activity of populations 
of visual cortical neurons occupies a number of dimen-
sions far smaller than the number of neurons in the 
population constrains plausible mechanisms for priority 
coding. In a low-dimensional space where the range of 
firing rates is limited (from 0 to about 100–200 spikes 
per second per neuron), modulating the magnitude of 
a population response might be a particularly straight-
forward way to achieve prioritization. The mechanism 
is simple: small changes in the ratio of excitation to inhi-
bition can cause big changes in mean rates. Additionally, 
the impact of these changes is big: more spikes leads to 
more (and probably more nuanced) activity in down-
stream populations, meaning that changes in response 
magnitude might have preferentially large effects on 
behaviour. In addition, as long as these changes are 
approximately multiplicative, this approach results in 
stimulus prioritization without affecting representations 

of visual identity (Fig. 3a). Whether this or other mecha-
nisms support the neural correlates of priority coding is 
an important topic of future research.

Towards a unified account
After so many years of studying priority coding, what is 
needed to test speculative ideas about a unified account 
of priority coding? The field is well positioned to move 
in several directions that we believe are essential to 
achieve that goal. Here, we highlight four.

First, we need data that systematically compare dif-
ferent forms of priority. The first step towards a unified 
account of priority coding is to determine whether pri-
ority coding is in fact unified, in terms of whether dif-
ferent behavioural priority signatures are reflected via 
one or more shared neural correlates as well as under-
lying neural mechanisms. The traditional tasks, stimuli, 
brain areas and neural measurements typical of different 
subfields have made it difficult to directly compare dif-
ferent forms of priority coding. In recent years, the field 
has strongly encouraged collaborations between exper-
imentalists and theorists through grant programmes 
such as the Collaborative Research in Computational 
Neuroscience (CRCNS) programme. However, this key 
obstacle to understanding priority coding will be best 
overcome by collaborations between teams of exper-
imentalists who commit to making directly compara-
ble measurements during different forms of priority 
coding and recording from multiple brain areas. These 
experiments will need controlled and robust behav-
iours as an anchor with which to evaluate modulation 
by different forms of priority as well as results of causal 
manipulations137. These experiments will help shed 
insight into the sources of input that lead to prioritiza-
tion and the degree to which prioritization arises from 
feedforward as compared to feedback inputs. These 
experiments will also need to build on the behavioural 
repertoire in Fig. 2 to highlight other behavioural priority 
signatures, such as emotional salience209–211.

Second, we need unified models that capture multiple 
types of noise. To date, two distinct classes of models have 
focused on different forms of noise. Circuit models focus 
on trial-to-trial variability at the expense of an account 
of how networks respond to naturalistic stimuli. By con-
trast, DANNs focus on stimulus variability, but their 
deterministic structure cannot capture priority-driven 
changes in trial-to-trial variability. Although some 
efforts have been made to reconcile these two different 
approaches, such as by inserting noise into early layers 
of DANNs and determining how connectivity affects 
the way that noise is changed throughout the pathway212, 
these differences highlight the importance of creating 
models that can account for and make predictions about 
different aspects of neural population activity213.

Third, we need experimental and theoretical efforts 
to understand the roles of subspaces of population 
activity in priority coding. Uncovering the relationship 
between the subspaces of neuronal population activity 
that encode different stimuli or features, forms of priority 
coding, and interactions between areas and behavioural 
prioritization is a critical direction for future work. New 
experiments are needed to measure the extent to which 
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activity inside and outside those subspaces influences 
behaviour and how that activity is modulated by dif-
ferent forms of prioritization. Current instantiations of 
circuit models and DANNs do not typically account for 
current observations about subspaces, and doing so may 
place critical constraints on their architecture.

Fourth, we need data and models that capture how 
different forms of priority are integrated as well as the 
dynamic variation in priority behaviours. In natural 
behaviour, prioritization involves the integration of 
multiple forms of priority as a dynamic and continu-
ous process to navigate a continually changing environ-
ment. By contrast, in laboratory studies, prioritization is 
typically studied by isolating different forms of priority 
and, for each type, switching between a small number of 
unambiguous task or stimulus conditions. Behavioural 
evidence supports notion that understanding the 
interactions between different types of prioritization 
is important for understanding priority coding; for 
example, perceptual learning can increase the saliency 
of familiar targets among distractors and reduce depend-
ency on top-down attention81,214. Similarly, dynamic and 
continuous tasks are likely to change our understand-
ing of the neural mechanisms by which cognition and 
perception interact89,215–218 and help us more effectively 
identify the mapping between neurons and behaviour 
than binary tasks168.

Prioritization is a critical part of natural vision, and 
the failure to appropriately prioritize visual information 
is a particularly debilitating symptom of neuropsychiat-
ric disorders ranging from Alzheimer disease to autism, 
and is particularly relevant during recovery from blind-
ness. Efforts to understand the neural basis of priorit-
ization have resulted in a tantalizing smorgasbord of 
observations, and the time is ripe for merging different 
experimental and theoretical approaches to understand 
how they fit together. For future studies, doing so should 
be a priority.

Citation diversity statement
Recent work in neuroscience and related fields has 
identi fied citation biases whereby work from women 
and minorities are under-cited relative to other papers in 
the field219–221. Inclusion of citation diversity statements 
has been proposed as a way of increasing transparency 
surrounding citation practice219,222. Similar to reF.219, the 
gender balance of citations was quantified according to 
the first names of the first/last authors using open source 
code223 followed by manual adjustment to resolve ambi-
guities. Excluding self-citations, this article contains 
64.9% man/man, 11.0% man/woman, 13.6% woman/
man and 10.4% woman/woman citations. For com-
parison, proportions estimated from articles in five top 
neuroscience journals (as reported in reF.219) are 58.4% 
man/man, 9.4% man/woman, 25.5% woman/man and 
6.7% woman/woman. Note that the used databases 
may not always be indicative of gender identity and do 
not account for intersex, non-binary or transgender 
individuals.

We also obtained predicted racial/ethnic category of 
the first and last author of each reference by databases 
that store the probability of a first and last name being 
carried by an author of colour224,225 using the approaches 
described in reF.226. By this measure (and excluding 
self-citations), our references contain 11.4% authors of 
colour (first)/author of colour (last), 11.9% white author/
author of colour, 21.3% author of colour/white author and 
55.5% white author/white author. For comparison, pro-
portions estimated from articles in five top neuro science 
journals (as reported in reF.226) are 14.1% author of  
colour/author of colour, 15.6% white author/author  
of colour, 23.5% author of colour/white author and 
46.7% white author/white author. Note that these data-
bases are automated and may not always be indicative of 
racial or ethnic identity.
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