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Prior Expectations in Visual Speed Perception Predict
Encoding Characteristics of Neurons in Area MT

Ling-Qi Zhang and Alan A. Stocker

Bayesian inference provides an elegant theoretical framework for understanding the characteristic biases and discrimination
thresholds in visual speed perception. However, the framework is difficult to validate because of its flexibility and the fact
that suitable constraints on the structure of the sensory uncertainty have been missing. Here, we demonstrate that a Bayesian
observer model constrained by efficient coding not only well explains human visual speed perception but also provides an
accurate quantitative account of the tuning characteristics of neurons known for representing visual speed. Specifically, we
found that the population coding accuracy for visual speed in area MT (“neural prior”) is precisely predicted by the power-
law, slow-speed prior extracted from fitting the Bayesian observer model to psychophysical data (“behavioral prior”) to the
point that the two priors are indistinguishable in a cross-validation model comparison. Our results demonstrate a quantita-
tive validation of the Bayesian observer model constrained by efficient coding at both the behavioral and neural levels.
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Significance Statement

Statistical regularities of the environment play an important role in shaping both neural representations and perceptual
behavior. Most previous work addressed these two aspects independently. Here we present a quantitative validation of a theo-
retical framework that makes joint predictions for neural coding and behavior, based on the assumption that neural represen-
tations of sensory information are efficient but also optimally used in generating a percept. Specifically, we demonstrate that
the neural tuning characteristics for visual speed in brain area MT are precisely predicted by the statistical prior expectations
extracted from psychophysical data. As such, our results provide a normative link between perceptual behavior and the neural
representation of sensory information in the brain.

Introduction
Human perception of visual speed is typically biased and
depends on stimulus attributes other than the actual motion
of the stimulus. Contrast, for example, strongly affects per-
ceived stimulus speed such that a low-contrast drifting grating
typically appears to move slower than a high-contrast grating
(Thompson, 1982; Stone and Thompson, 1992; Blakemore
and Snowden, 1999; Stocker and Simoncelli, 2006). These
biases and perceptual distortions are qualitatively consistent
with a Bayesian observer that combines noisy sensory meas-
urements with a prior preference for lower speeds (Simoncelli,
1993; Weiss et al., 2002; Stocker, 2006). Previous work has

also shown that by embedding the Bayesian observer within a
two-alternative forced choice (2AFC) decision process one
can “reverse-engineer” the noise characteristics (i.e., likeli-
hood) and prior expectations of individual human subjects
from their behavior in a speed-discrimination task (Stocker
and Simoncelli, 2004, 2006). This provided both a quantitative
validation of the Bayesian observer model and a normative
interpretation of human behavior in visual speed perception
tasks, which has been confirmed in various later studies
(Welchman et al., 2008; Hedges et al., 2011; Sotiropoulos
et al., 2014; Jogan and Stocker, 2015). However, recovering
the parameters of a Bayesian observer model from behavioral
data is typically difficult because of the intrinsic nonspecificity
of its probabilistic formulation, which has been grounds for a
critical view of the Bayesian modeling approach altogether
(Jones and Love, 2011; Bowers and Davis, 2012). The reverse-
engineered speed priors in previous studies indeed all showed
large variations across subjects, indicating a potential case of
overfitting because of insufficient model constraints (Stocker
and Simoncelli, 2006; Hedges et al., 2011; Sotiropoulos et al.,
2014; Jogan and Stocker, 2015).

In this article, we show how we addressed this potential prob-
lem by developing and validating a tightly constrained Bayesian
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observer model. We followed a recent proposal to use efficient
coding as a constraint that links the likelihood function to the
prior expectations of a Bayesian observer (Wei and Stocker,
2012, 2015). The efficient coding hypothesis posits that biological
neural systems allocate their limited coding capacity such that
overall information transmission is optimized given the stimulus
distribution in the natural environment (Barlow, 1961; Laughlin,
1981). It thus establishes a direct relationship between the stimu-
lus distribution and the accuracy of neural representations in
sensory systems (Linsker, 1988; McDonnell and Stocks, 2008;
Wang et al., 2012; Ganguli and Simoncelli, 2014; Yerxa et al.,
2020; Roy et al., 2021). Wei and Stocker (2015) showed how to
formulate efficient coding as an information constraint that
can be embedded within the probabilistic language of the
Bayesian framework. The resulting Bayesian observer model
has proven to account for a wide range of phenomena in per-
ception including repulsive biases in perceived visual orien-
tation (Wei and Stocker, 2015; Taylor and Bays, 2018) and
the lawful relationship between perceptual bias and discrimi-
nation threshold (Wei and Stocker, 2017), but also in more
cognitive domains such as subjective preferences judgments
(Polania et al., 2019) or the representation of numbers (Prat-
Carrabin and Woodford, 2021).

The overall goal of our current work was twofold. First, we
aimed for quantitative validation of this new Bayesian observer
model in the domain of visual speed perception. We fit the
model to speed discrimination data collected by Stocker and
Simoncelli (2006). We found that compared with the model in
this original study, the new model allowed us to reverse-engineer
much more reliable and consistent estimates of subjects’ prior
beliefs while still accurately accounting for subjects’ psychophysi-
cal behavior. Second, based on the efficient coding hypothesis,
we wanted to test whether the reverse-engineered prior expecta-
tions are mirrored in the population-encoding characteristics of
neurons in the motion-sensitive area in the primate brain. The
middle temporal (MT) area is widely recognized as the cortical
area in the primate brain that selectively represents direction and
speed of moving visual stimuli (Zeki, 1974; Newsome and Pare,
1988; Britten et al., 1993; Movshon and Newsome, 1996; Priebe
et al., 2003). By analyzing single-cell recordings of a large popula-
tion of MT neurons (Nover et al., 2005), we found that the sensi-
tivity with which visual speed is encoded in this population
(“neural prior”) is precisely predicted by the prior beliefs
extracted from the psychophysical data (“behavioral prior”). Our
results provide important quantitative validation of the Bayesian
observer model constrained by efficient coding at both the be-
havioral and neural levels.

Materials and Methods
Behavioral prior: Bayesian observer model constrained by efficient
coding

Data. We reanalyzed the 2AFC speed discrimination data from
Stocker and Simoncelli (2006). In each trial of the experiment, a subject
was shown a pair of horizontally drifting gratings (reference and test),
and was asked to choose which one of them was moving faster. The ref-
erence grating had one of two contrast levels (0.075, 0.5) and one of six
different drifting speeds (0.5, 1, 2, 4, 8, 12°/s). The test grating had one of
seven different contrast levels (0.05, 0.075, 0.1, 0.2, 0.4, 0.5, 0.8), and its
speed was determined by an adaptive staircase procedure (one-up/one-
down). There were 72 different individual conditions (i.e., psychometric
curves), and each condition contained 80 trials, resulting in a total of
5760 trials. We excluded one subject (labeled as “Subject 3” in the study
by Stocker and Simoncelli (2006)) that was tested at only two contrasts
and two test speed levels. While we were able to recover a prior from this

subject that was highly consistent with the rest of the subjects, it was not
possible to perform a meaningful model comparison and cross-valida-
tion because of the low number of trials.

Model formulation. We use the Bayesian observer model by Wei
and Stocker (2015) and embed it within a decision process to pre-
dict the binary judgments in the 2AFC experiment (Stocker and
Simoncelli, 2006).

Specifically, we assume that “encoding” of the stimulus is governed
by an efficient coding constraint such that encoding accuracy, measured
as the square root of Fisher Information (FI), is proportional to the stim-
ulus prior (Brunel and Nadal, 1998; McDonnell and Stocks, 2008; Wei
and Stocker, 2016), hence:

ffiffiffiffi
IF

p ðvÞ / pðvÞ: (1)

Encoding is described as the conditional probability distribution
p(mjv). It determines how stimulus speed v is transformed probabilisti-
cally into a noisy sensory measurement, m. We can satisfy the efficient
coding constraint (Eq. 1) by assuming the following encoding
distribution:

pðm j vÞ ¼ N
�
m;m ¼ FðvÞ;s 2 ¼ h2ðcÞ

�
; (2)

where FðvÞ ¼
ðv
�1

pðvÞdv is the cumulative density function (CDF) of v.

We parameterized the speed prior distribution as the following, modi-
fied power-law function:

pðvÞ / ðjvj1c1Þc01c2; (3)

where c0,1,2 are free and unconstrained parameters. We also tested alter-
native parameterizations (see Fig. 4). The scalar h(c) determines the
amount of total encoding resources (i.e., the overall magnitude of inter-
nal noise) at different contrast levels. It can be shown that:

ffiffiffiffiffiffiffiffiffiffi
IFðvÞ

p
¼ F0ðvÞ=s ¼ pðvÞ=hðcÞ: (4)

The total amount of encoding resource is measured byð ffiffiffiffiffiffiffiffiffiffi
IFðvÞ

p
dv, which equals to 1/h(c). To numerically handle the

unbounded nature of a magnitude variable such as speed (com-
pared with a circular variable such as orientation), we added a
small constant (2.5 * 10– 3) to p(v) such that its CDF did not satu-
rate (i.e., F(v) is not upper bounded by 1).

To decode (i.e., estimate) the stimulus v, given a particular sensory
representation,m, we first determine the likelihood function:

lðvÞ ¼ pðm j vÞ; (5)

by considering the encoding distribution (Eq. 2) as a function of v.
Applying Bayes’ rule and multiplying the likelihood function with the
prior p(v) (Eq. 3), we then can compute the posterior as follows:

pðv j mÞ / lðvÞpðvÞ: (6)

Assuming an L0 loss function (Stocker and Simoncelli, 2006), the
estimate v̂ of the stimulus v is given as:

v̂ ¼ argmax
v̂

lðv̂Þpðv̂Þ: (7)

The estimate represents the optimally decoded stimulus v̂ givenm. It
is a deterministic function of m [implicit in the likelihood function l(v)],
which we can explicitly express as v̂ðmÞ. However, m is not directly
observable in a psychophysical experiment. Thus, we marginalize overm
to obtain the estimate distribution for a given stimulus, v, as follows:
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pðv̂ j vÞ ¼
ð
pðv̂ j mÞpðm j vÞdm ¼

ð
d ðv̂ � v̂ðmÞÞpðm j vÞdm; (8)

where d (·) is the Dirac delta function.
In a 2AFC speed discrimination experiment, subjects report a binary

decision and not a continuous estimate. We assume subjects make their
choices (i.e., which one is faster) by comparing their estimate v̂r of the
reference stimulus with their estimate v̂t of the test stimulus. For a pair
of vt and vr across many repeated trials, these choices follow a binomial
distribution with the probability of the test stimulus being perceived
faster given as follows:

pvt ;vr ðv̂t.v̂rÞ ¼
ð11

�1
pðv̂t j vtÞ

ð v̂t

�1
pðv̂r j vrÞdv̂rdv̂t: (9)

Model fitting. If we represent the data in our experiment as N triplets
(vir, vit, ki), where ki [ {0,1} represents the binary choice, then the overall
log-likelihood of the model given the data is:

L ¼
XN
i¼1

fkilog½pvit ;vir ðv̂ it.v̂ irÞ�1ð1� kiÞlog½1� pvit ;vir ðv̂ it.v̂ irÞ�g:

(10)

We find the model parameters c0, c1, c2, and h(c) by maximizing
L using the MATLAB fminsearchbnd algorithm. Note that the
model is highly constrained: for each subject, we jointly fit a single
three-parameter prior distribution plus one scalar noise parame-
ter, h(c), for each of the seven contrast levels to the data from all 72
conditions.

Alternative prior parameterization. To
assess the consistency and stability of our
reverse-engineered prior distributions, we also
tested the following two alternative parameter-
izations (see Fig. 4):

� a Gamma distribution: pðv;a; b Þ / jvja–1e–b jvj

� a piece-wise log-linear function with 18 sam-
ple points, v�1:18, equally distributed in loga-
rithmic space in the range v = 0...50°/s. Each
corresponding pðv�1:18Þ value is a free prior
parameter; prior density values are linearly
interpolated between those values.
For comparison, we also fit a Gaussian prior

with p(v; s2) =N (v;m = 0, s2).
Weber’s law and power-law prior. With our

model, it is possible to analytically predict dis-
crimination threshold Dv and Weber fraction
Dv

v
for any given prior distribution. It has been

shown that the discrimination threshold is
inversely proportional to the square root of FI
(Seriès et al., 2009; Wei and Stocker, 2017):

Dv / 1ffiffiffiffi
IF

p : (11)

According to the efficient coding constraint
(Eq. 1), we can substitute

ffiffiffiffi
IF

p
with p(v) and find:

Dv / 1
pðvÞ : (12)

This equation allows us to predict discrimi-
nation threshold for any prior density (up to a
scale factor). For the modified power-law prior
with exponent c0 = – 1 and c2 = 0 (Eq. 3), we
can find the following:

Dv / ðv1c1Þ: (13)

By further setting c1 = 0 we obtain v! Dv, which is the definition of
Weber’s law (i.e., a constant Weber fraction). For nonzero c1, the Weber
fraction changes to:

Dv

v
/ 11

c1
v

� �
: (14)

At high speeds,
c1
v
� 0, and thus the Weber fraction is constant. At

low speeds,
c1
v
! 1, which causes

Dv

v
to increase.

Our efficient coding constraint implies that the stimulus is trans-
formed according to the CDF of v (Eq. 2). For a power-law prior with
exponent c0 = – 1 and c2 = 0, the CDF is as follows:

ð
z1ðv1c1Þ�1dv ¼ z1logðv1c1Þ1z2; (15)

which is precisely the logarithmic transformation that has been previously
used for describing the speed tuning of MT neurons (Nover et al., 2005).

Neural prior: MT encoding analysis
Data. We reanalyzed the electrophysiological recording data from

the study by Nover et al. (2005). Neurons in area MT of several macaque
monkeys were individually identified. Each identified neuron was then
tested with a random-dot motion stimulus moving with one of eight
speeds (0, 0.5, 1, 2, 4, 8, 16, 32°/s). Stimulus location, direction, size, and
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Figure 1. Bayesian observer model constrained by efficient coding. A, We model speed perception as an efficient encod-
ing, Bayesian decoding process (Wei and Stocker, 2012, 2015). Stimulus speed v is encoded in a noisy and resource-limited
sensory measurement, m, with an encoding accuracy that is determined by the stimulus prior p(v) via the efficient coding
constraint (Eq. 1). Ultimately, a percept is formed through a Bayesian decoding process that combines the likelihood p(m|v)
and prior p(v) to compute the posterior p(v|m), and then selects the optimal estimate v̂ according to a loss function.
Encoding and decoding are linked and jointly determined by the prior distribution over speed. B, Efficient coding determines
the accuracy of the neural representation of visual speed (i.e., the tuning characteristics of neurons in area MT). C,
Embedding the Bayesian observer within a decision process provides a model to predict psychophysical behavior in a 2AFC
speed discrimination task.
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disparity were individually optimized for each
neuron. Every stimulus speed was presented
three to seven times. We considered the mean
firing rate over the entire stimulus duration (1.5
s) as the single-trial response of a neuron. We
analyzed a total of 480 neurons.

Population Fisher Information. Following
Nover et al. (2005), we fit the mean firing
rate of each neuron as a function of stimu-
lus speed with a Gaussian tuning curve in
log-speed:

RðvÞ ¼ R01Aexp � log½qðvÞ�2
2s 2

� �
; (16)

where qðvÞ ¼ v1v0
vp1v0

. Parameters R0, A, s
2, v0,

and vp are determined by minimizing the sum
of squared difference of the observed and pre-
dicted firing rates. A maximum-likelihood fit
assuming Poisson distributed firing rate vari-
ability produced very similar results.

We computed the population FI for differ-
ent assumptions about the response variabilities
of neurons and their pair-wise noise correla-
tions within the population. First, we assumed
that response noise is independent between
neurons in the population, and response vari-
ability is well described by a Poisson process. In
this case, the population FI is calculated as
follows:

IFðvÞ ¼
XN
i¼1

½R0
iðvÞ�2
RiðvÞ : (17)

The neural prior (the prior that corresponds
to the measured MT encoding precision,
assuming efficient encoding) is then equivalent
to the normalized square-root of FI, thus:

pðvÞ ¼
ffiffiffiffiffiffiffiffiffiffi
IFðvÞ

p
ð ffiffiffiffiffiffiffiffiffiffi

IFðvÞ
p

dv
: (18)

As in the study by Nover et al. (2005), we
also repeated the above analysis using an al-
ternative tuning-curve model (Gamma dis-
tribution function) and obtained very
similar results.

Next, we estimated the population FI by
adjusting the Poisson model with an explicit estimate of the Fano
factor Fi for each neuron as follows:

IFðvÞ ¼
XN
i¼1

½R0
iðvÞ�2

FiRiðvÞ; (19)

where Fi was obtained by linearly regressing the firing rate variance
of the neuron against its firing rate mean. Finally, we computed
the linear Fisher Information (Kanitscheider et al., 2015; Kohn et
al., 2016), as follows:

IFðvÞ ¼ ~R
0ðvÞTR�1~R

0ðvÞ; (20)

where R is the noise correlation matrix and is the identity matrix for
the independent noise case. To understand the effect of speed tuning
preference-dependent noise correlations observed in area MT (Huang

and Lisberger, 2009), we adopted the following limited-range correlation
model:

Rij ¼ s 2r ij

r ij ¼ expð�jDijj=LÞ; (21)

where Dij is the difference in log-speed preference between neuron i and
neuron j, s2 is the noise variance, and L is the overall correlation
strength (Abbott and Dayan, 1999). For the simulations seen in Figure
7E, we set s2 = 1 as the prior is only determined by the shape of the pop-
ulation FI and L = [0.5, 1.0, 2.5] for low, medium, and high correlation
strengths.

Cross-validation. We performed a fivefold cross-validation proce-
dure. The trial data for each condition were first randomly and equally
divided into five groups. For each group, the model was fit to the data of
the remaining four groups (training), and then evaluated on the group’s
data (validation). Model validation performance was measured as the
log-likelihood of the fit model given the validation data. The entire
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procedure was repeated 20 times, resulting in 100 estimates of the model
validation likelihood. For the behavioral prior condition, we considered
the full observer model using the fit prior for that run. For the neural
prior condition, we assumed that the prior is fixed and equal to the prior
extracted from the population FI analysis with only the contrast-depend-
ent noise parameters being fit on each run. The same procedure was
used to compute the validation likelihoods of the original, less con-
strained Bayesian observer model (Stocker and Simoncelli, 2006); and of
individual Weibull fits to every condition. The log-likelihood values seen
in Figure 8B were normalized to the range set by a lower bound given by
the log-likelihoods of a coin-flip model for the decision (i.e., a model
with a fixed decision probability of 0.5) and an upper bound determined
by the values of the Weibull fits.

Data availability
Data and analysis code, including the instruction to create a full display
of the psychometric curves and model fits for individual subjects, are
available through GitHub (https://github.com/cpc-lab-stocker/Speed_
Prior_2021).

Results
We model speed perception as an efficient encoding, Bayesian
decoding process (Fig. 1A). On any given trial, the speed v of a
visual stimulus is represented by a noisy and bandwidth-limited
sensory measurement, m. Following Wei and Stocker (2012,
2015), we assume that encoding of the stimulus is governed by
an efficient coding constraint (Eq. 1) such that encoding accu-
racy, measured as the square root of FI, is proportional to the
stimulus prior p(v) (Brunel and Nadal, 1998; McDonnell and
Stocks, 2008; Wei and Stocker, 2016). This constraint promotes a
more accurate encoding of speeds for which the prior density is

high. It determines the observer’s uncertainty about the actual
stimulus speed given a particular sensory measurement [i.e., the
likelihood function p(m|v)]. For “decoding”, this likelihood func-
tion is combined with the stimulus prior p(v), resulting in the
posterior p(v|m). Last, a percept, v̂ (i.e., an estimate), is computed
based on the posterior and a loss function (for details, see
Materials and Methods).

A unique feature of the new model is that the stimulus distri-
bution jointly determines encoding and decoding of the Bayesian
observer model (Wei and Stocker, 2012). Thus, both the encoding
characteristics of neurons representing visual speed (Fig. 1B), and
the psychophysical behavior of subjects in speed perception (Fig.
1C) should be consistent with the prior belief of the observer about
the statistical regularities of visual speed.

Extracting the behavioral prior
We fit our model to the psychophysical speed discrimination
data collected by Stocker and Simoncelli (2006). On each trial of
their experiment, subjects were shown a pair of horizontally
drifting gratings (reference and test stimulus) and were asked to
choose which one was moving faster (Fig. 1C). For each combi-
nation of stimulus contrast and reference speed, a full psycho-
metric curve was measured by repeating the trials at different test
speeds chosen by an adaptive staircase procedure. A total combi-
nation of 72 conditions representing reference and test stimuli at
different speeds and contrast levels were tested, resulting in 72
different psychometric functions (for details, see Materials and
Methods; Stocker and Simoncelli, 2006).

In contrast to the original model (Stocker and Simoncelli,
2006), the new observer model directly links the likelihood func-
tion and the prior distribution (Wei and Stocker, 2012). Thus,
perceived speed is fully determined by subjects’ prior expecta-
tions and a contrast-dependent internal noise parameter that
reflects the total amount of represented sensory information
(Wei and Stocker, 2015, 2016). Our goal was to find the prior
distribution p(v) and the noise parameters h(c) that best
accounted for subjects’ individual perceptual behavior. To fit the
observer model, we embedded it within a binary decision process
(Fig. 1C). On each trial, speed estimates for both the reference
and the test stimuli are obtained, and then subjects are assumed to
respond according to which estimate is faster. Entire psy-
chometric functions are predicted by marginalizing over the unob-
served sensory measurement.

We jointly fit our model for every subject to all 72 conditions
using a maximum-likelihood procedure. The free parameters of the
model consisted of a parametric description of the prior and one
noise parameter for each stimulus contrast. Following previous
studies (Stocker and Simoncelli, 2006; Hedges et al., 2011; Jogan
and Stocker, 2015), we parameterized the prior distribution as a
modified power-law function (Eq. 3). Figure 2A shows the data and
model fit for a few example conditions for exemplary Subject 1. Fit
parameter values for all subjects are listed in Table 1. Overall, the
model predicts psychometric curves that are similar to those
obtained from fitting a Weibull function. The log-likelihood of the

Table 1. Fit parameter values of the prior density pðvÞ / ðjvj1c1Þc01c2 and the contrast-dependent noise r = h(c) for every subject

Subject c0 c1 c2 h(0.05) h(0.075) h(0.10) h(0.20) h(0.40) h(0.50) h(0.80)

1 �0.790 0.003 6 * 10– 5 0.035 0.027 0.028 0.019 0.016 0.013 0.012
2 �0.867 0.002 10– 8 0.045 0.041 0.038 0.030 0.023 0.020 0.010
3 �1.045 0.220 1 * 10– 5 0.061 0.045 0.041 0.029 0.017 0.019 0.026
4 �1.097 0.248 7 * 10– 6 0.043 0.040 0.036 0.028 0.018 0.017 0.016
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Figure 3. Contrast-dependent noise. Fit parameter values are shown as a function of
stimulus contrast plotted for every subject. Bold lines represent fits with a parametric
description of the contrast response function of cortical neurons
hðcÞ ¼ ½rmaxcq=ðcq1cq50Þ1rbase ��1=2 (Albrecht and Hamilton, 1982; Sclar et al.,
1990; Heuer and Britten, 2002).
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new model is close to that of separate
Weibull fits to every individual condition
(Fig. 2B). Figure 2C further illustrates that
the new model performs as well as the origi-
nal, less constrained Bayesian observer
model (Stocker and Simoncelli, 2006). A
more detailed model comparison using
cross-validation is provided in a later
section.

Importantly, the reverse-engineered
prior expectations are much more consist-
ent across subjects than those obtained
from using the original model (Stocker
and Simoncelli, 2006; Hedges et al., 2011;
Sotiropoulos et al., 2014; Jogan and
Stocker, 2015). The exponent c0, for exam-
ple, is now close to a value of �1 for every
subject rather than varying over an order
of magnitude (Table 1). Furthermore, val-
ues of the contrast-dependent noise pa-
rameter monotonically decrease as a
function of contrast as expected and are
consistent with the functional description
of the contrast response curve of cortical
neurons (Fig. 3).

To test the impact of choosing a
power-law parameterization for the prior
distribution (Eq. 3), we performed model
fits using two other parameterizations
with increasing degrees of freedom (i.e., a
Gamma distribution and a piece-wise
log-linear function), and also a Gaussian
prior for comparison (see Materials and
Methods). The model fits well for all but the Gaussian prior,
resulting in similar log-likelihood values (Fig. 2B), although the
Bayesian information criterion (BIC) value is higher for the log-
linear parameterization because of its large number of parame-
ters (Fig. 2C). Crucially, however, the shapes of the fit prior dis-
tributions are very similar across the different parameterizations,
all exhibiting a power-law like, slow-speed preferred distribution
(Fig. 4). The obvious exception is the Gaussian parameterization
because it is unsuited to approximate a power-law function.

We further validated our model by comparing its predictions
for contrast-induced biases and discrimination thresholds to
subjects’ data. To quantify bias, we computed the ratio of test
speed to reference speed at the point of subjective equality (PSE;
defined as the 50% point of the psychometric curve). If a lower-
contrast test stimulus is indeed perceived to be slower, then its
physical speed will need to be higher to match the perceived
speed of the higher-contrast reference. Thus, a contrast-induced
slow-speed bias is manifested by a PSE ratio greater than one
when the test contrast is lower than the reference, and vice versa.
As shown in Figure 5A, subjects clearly underestimated the
speeds of low-contrast stimuli, an effect that occurred at any con-
trast level and speed. Furthermore, subjects’ thresholds increase
monotonically with speed (Fig. 5B). While they follow Weber’s
law at higher speeds, they deviate from a constantWeber fraction
at slow speeds, which is well documented (McKee et al., 1986; De
Bruyn and Orban, 1988; Stocker and Simoncelli, 2006). Our new
model is able to capture both the contrast-induced slow-speed
bias and the discrimination threshold behavior with an accuracy
comparable to the original model (Stocker and Simoncelli, 2006;
see Fig. 2C).

It is worth noting that the predicted higher threshold values
for the low-contrast stimulus condition are not particularly evi-
dent in the data (Fig. 5B). Previous studies, however, have con-
vincingly demonstrated that lower stimulus contrasts lead to
higher speed discrimination thresholds under various stimulus
configurations (Panish, 1988; Turano and Pantle, 1989; Horswill
and Plooy, 2008; Champion andWarren, 2017). Thus, we believe
that the experimental design in the study by Stocker and
Simoncelli (2006), in particular the deliberate compromise in
choosing a low number of trials per condition (only 80 trials per
psychometric curve) to test subjects over a large range of differ-
ent contrast/speed combinations, may be responsible for the
noisy, overlapping threshold estimates. The ability to obtain reli-
able threshold estimates was further limited by the use of a stair-
case procedure optimized for inferring the PSE rather than the
slope of the psychometric curves (for details, see Stocker and
Simoncelli, 2006). Future investigations will be required to fully
resolve this discrepancy.

Despite its constrained nature, the model can well account for
individual differences across subjects. Differences in the values of
the contrast-dependent noise parameter determine individual
variations in bias and threshold magnitude. In addition, when
the prior exponent is close to �1, the PSE ratios are mostly con-
stant across different speeds (e.g., Fig. 5A, Subjects 3 and 4; Wei
and Stocker, 2017), whereas an exponent larger than�1 predicts
relative biases that decrease for higher stimulus speeds (e.g., Fig.
5A, Subject 1).

Previous models have mainly focused on the contrast-
induced speed bias and how it can be attributed to a slow-speed
prior that shifts the percept toward slower speeds for increasing
levels of sensory uncertainty (Hürlimann et al., 2002; Weiss et
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al., 2002; Stocker, 2006; Stocker and Simoncelli, 2006; Hedges et
al., 2011; Lakshminarasimhan et al., 2018; Rokers et al., 2018).
While this is still the case for our new model, the monotonic
increase in threshold is now also a direct consequence of the
slow-speed prior: since higher speeds are less likely, efficient cod-
ing dictates that less neural resources are allocated for their rep-
resentation, resulting in a larger threshold. In fact, the predicted
Weber fractions based on subjects’ reverse-engineered priors
closely resemble previous psychophysical measurements (Fig. 6;
also see Materials and Methods).

Extracting the neural prior
The efficient coding constraint of the model predicts that the
neural encoding of visual speed should reflect the stimulus prior
distribution (Wei and Stocker, 2012, 2016; Ganguli and
Simoncelli, 2014). Thus, if our new model is correct, then the

reverse-engineered behavioral prior should be a good predictor of
the neural encoding characteristics of visual speed. Specifically, we
expect the neural encoding accuracy, measured as the square root
of the neural population FI, to match the extracted speed prior
(Eq. 1).

To test this prediction, we analyzed the encoding characteris-
tics of a large population of neurons in area MT. Our analysis
was based on single-cell recorded data from the macaque brain
(Nover et al., 2005). The data contained repeated spike counts
from 480 MT neurons responding to random dot motion stimuli
moving at eight different speeds. Following the original study
(Nover et al., 2005), we fit a log-normal speed-tuning curve
model for each neuron in the dataset (Fig. 7A). This tuning curve
model accurately described the mean firing rates of the majority
of the neurons (Fig. 7B). Under the assumption that neural
response variability was well captured by a Poisson distribution,
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it is then straightforward to compute the FI of individual neu-
rons (Fig. 7A; see Materials and Methods).

Given the inherent limitations of single-unit recorded data,
assumptions about the noise and its correlation structure in the
population are necessary to compute the population FI (Abbott
and Dayan, 1999; Averbeck et al., 2006; Moreno-Bote et al.,
2014; Kohn et al., 2016). We first considered the noise to be inde-
pendent among the neurons in the recorded population. In this
simplified scenario, the population FI is the sum of the FI of indi-
vidual neurons (Fig. 7C). The shape of the resulting population
FI is very close to a power-law function; that is, when plotted on
a log-log scale, it closely resembles a straight line. Two slightly
different methods of calculating the FI of individual neurons, ei-
ther by estimating the Fano factor explicitly or by computing the
linear FI (Kanitscheider et al., 2015; Kohn et al., 2016), produced
nearly identical estimates of the shape of the population FI (Fig.
7D; see Materials and Methods).

Further, assuming a correlation pattern that is speed inde-
pendent simply reduces the magnitude of the population FI but
does not change its overall shape compared with the independent
noise assumption. However, speed tuning-dependent noise cor-
relations between pairs of neurons have been reported for area
MT (Huang and Lisberger, 2009). Thus, to assess the potential
impact of such correlations (Zohary et al., 1994), we computed
the linear population FI with a limited-range correlation model
based on the relative speed preferences of individual neurons
(Abbott and Dayan, 1999; see Materials and Methods). We
found that although the magnitude of FI decreases with increas-
ing correlation strength, the shape of the population FI is largely
invariant within a large range of simulated correlation strengths
(Fig. 7E). The reason these correlations have little effect on the
shape of the population FI is that the tuning characteristics of MT
neurons are relatively “homogeneous” (i.e., the parameters of the
tuning curve, such as the tuning width, are mostly independent of
speed preference) and close to uniformly tile the logarithmic speed
space (Nover et al., 2005). Thus, we argue that, given the available
evidence, estimating the shape of the population FI assuming in-
dependent noise is a reliable approximation.

The efficient coding constraint makes the additional predic-
tion that the overall magnitude of the population FI corresponds
to the total represented sensory information and, thus, should be
directly related to the contrast-dependent noise parameter of our
observer model (Wei and Stocker, 2015, 2016; Noel et al., 2021).
Although the contrast-dependent noise parameter values are
consistent with the typical contrast response function of cortical
neurons (Fig. 3), a rigorous test of the prediction requires charac-
terization of MT speed encoding at different levels of stimulus
contrasts, which is something the current data do not provide.
Preliminary neural data (Stocker et al., 2009) suggest, however,
that stimulus contrast indeed simply scales the population FI
without changing its shape. This is intriguing given the well
documented diversity and heterogeneity by which stimulus con-
trast affects the shape and position of speed-tuning curves in
area MT (Pack et al., 2005; Krekelberg et al., 2006; Stocker et al.,
2009).

Comparing the behavior and neural prior
Finally, we compared the extracted behavioral and neural priors.
If our observer model is correct, then the prior expectation with
which a subject perceives the speed of a moving stimulus should
be quantitatively identical to, and thus predictive of, the stimulus
distribution that neural encoding is optimized for. Figure 8A
shows the extracted behavioral prior of every subject and the
neural prior. The prior distributions are indeed very similar and
are consistent with a power-law function with an exponent of
approximately�1.

To quantitatively assess the effective similarity between the
behavior and neural prior, we constructed a “neural observer”
model for which the prior was fixed to be the neural prior
extracted from the MT data; only the contrast-dependent noise
parameters h(c) were free parameters. We used a cross-validation
procedure to compare this neural observer with the uncon-
strained observer model and the original model (Stocker and
Simoncelli, 2006). As illustrated in Figure 8B, the validation per-
formances are highly similar across all three models and closely
match the performance of individual Weibull fits. This compari-
son demonstrates several aspects. First, it confirms that the be-
havioral and neural priors are behaviorally indistinguishable and
thus effectively equivalent; if the neural data did not exist, we
would have been able to accurately predict the encoding accuracy
of MT neurons at the population level. Second, it highlights the
excellent quality of the Bayesian observer model as its account of
human behavior is close to that of the best possible parametric
description of the data (i.e., individual Weibull fits). And finally,
it shows that the complexity of our new observer model is appro-
priate and does not lead to overfitting.

Weber–Fechner law
The power-law shape of the behavioral and neural prior distribu-
tion also sheds a new normative light on the interpretation of
Weber’s law. Famously, Fechner proposed that Weber’s law
emerges from a logarithmic neural encoding of a stimulus vari-
able (Fechner, 1860). Neural encoding of visual speed in area
MT is indeed considered logarithmic (Nover et al., 2005; Burge
and Geisler, 2015): When analyzed in the logarithmic speed do-
main, the tuning curves of MT neurons are approximately bell
shaped and scale invariant, and tile the stimulus space with
nearly uniform density (Nover et al., 2005; Pack et al., 2005).

With our new model, we have already demonstrated that a
modified power-law prior (Eq. 2) with an exponent of approxi-
mately �1 can well account for Weber’s law behavior and the
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deviation from it at slow speeds (Fig. 6). We can now show that this
power-law prior also predicts logarithmic neural encoding.
Specifically, one way to implement the efficient coding constraint (Eq.
1) is to assume a homogeneous neural encoding (i.e., identical tuning
curves that uniformly tile the sensory space) of the variable of interest
transformed by its CDF (Ganguli and Simoncelli, 2010; Wei and
Stocker, 2012; Wang et al., 2016), which is sometimes also referred to
as histogram equalization (Acharya and Ray, 2005). With the expo-
nent c0 = – 1, the CDF of the speed prior is exactly the logarithmic
function that well described MT tuning characteristics (Nover et al.,
2005). Thus, the Bayesian observermodel constrained by efficient cod-
ing provides a normative explanation for both Weber’s law and the
logarithmic encoding of visual speed in areaMT.

Discussion
We presented a Bayesian observer model constrained by efficient
coding for human visual speed perception. We fit this model to

existing human 2AFC speed discrimination
data recorded over a wide range of stimulus
contrasts and speeds, which allowed us to
reverse-engineer the behavioral prior that
best accounts for the psychophysical behav-
ior of individual subjects. In addition, we an-
alyzed the population encoding the accuracy
of visual speed based on an existing set of
single-cell recordings in area MT, thereby
extracting the neural prior according to the
efficient coding constraint of our observer
model. We found that the behavioral prior
estimated from the psychophysical data
accurately predicts the neural prior reflected
in the encoding characteristics of the MT
neural population.

Our results provide a successful, quan-
titative validation of the Bayesian observer
model constrained by efficient coding in
the domain of visual speed perception. We
demonstrate that this model can accurately
account for the behavioral characteristics
of bias and threshold in visual speed per-
ception if subjects’ prior belief about the
statistical distribution of visual speed
resembles a power-law function with an
exponent of approximately �1. Cross-vali-
dation revealed no significant difference
between the best possible parametric
description of the behavioral data (i.e.,
individual Weibull fits) and our model fits.
Compared with the original, more flexible
Bayesian model formulation (Stocker and
Simoncelli, 2006), the added efficient cod-
ing constraint results in estimates of be-
havioral priors that are not only much
more consistent across subjects but are
also remarkably predictive of the popula-
tion-encoding characteristics of neurons
in the motion-sensitive area MT in the
primate brain. Our work substantially
strengthens the evidence for the slow-
speed prior interpretation of motion illu-
sions (Weiss et al., 2002; Stocker and
Simoncelli, 2004, 2006; Welchman et al.,
2008; Sotiropoulos et al., 2014; Jogan and

Stocker, 2015; Senna et al., 2015; but see Rideaux and
Welchman, 2020) by the demonstrated quantitative support
from electrophysiological neural data.

We also offer an explanation for why certain perceptual varia-
bles have a logarithmic neural representation and thus follow
Weber’s law (Fechner, 1860). According to our model, logarith-
mic encoding and Weber’s law both follow from the efficient
representation of a perceptual variable with a power-law prior
distribution. We thus predict that perceptual variables that con-
form to Weber’s law have power-law distributions with an expo-
nent of approximately�1 and are logarithmically encoded in the
brain (although alternative encoding solutions that satisfy the ef-
ficient coding constraint are possible; Wei and Stocker, 2015).
Indeed, perceptual variables that are known to approximately fol-
low Weber’s law, such as weight (Fechner et al., 1966), light inten-
sity (Treisman, 1964), and numerosity (Nieder and Miller, 2003;
Cheyette and Piantadosi, 2020; Prat-Carrabin and Woodford,
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2021), exhibit heavy tails in their statistical dis-
tributions under natural environmental condi-
tions (Dehaene and Mehler, 1992; Dror et al.,
2004; Peters et al., 2015; Piantadosi and Cantlon,
2017), a defining feature of a power-law func-
tion. Conversely, any deviation from Weber’s
law and the logarithmic encoding should be
reflected in deviations of the statistical stimulus
distributions from a power-law function. Future
studies of natural stimulus statistics, modeling
of psychophysical data, and neural recordings
will be needed to further and more quantita-
tively validate the generality of this prediction.

Other recent work has used efficient cod-
ing assumptions to link perceptual discrimi-
nability to the statistical prior distribution
of perceptual variables (Gu et al., 2010;
Ganguli and Simoncelli, 2016; Sims, 2018).
Our approach is a substantial step forward in
that it embeds this link within a full behav-
ioral observer model. Thus, rather than rely-
ing on a single summary metric of behavior
(i.e., discrimination threshold), the predic-
tions of our model are constrained by the full
richness of the psychophysical data (i.e., ev-
ery single datum in the set). This not only
provides a much more stringent test of the
observer model, but also permits more robust
and precise predictions of neural coding ac-
curacy and priors.

The presented comparison between behav-
ioral and neural priors is limited to the extent
that there were substantial experimental differ-
ences between the behavioral and neural data.
For example, we compared human with non-
human primate data and estimated the neural
tuning characterization based on single-cell
responses to random-dot motion rather than
the broadband, drifting grating stimuli used in
the psychophysical experiment. Yet, the sur-
prisingly accurate match of the extracted neural
and behavioral priors suggests that they may
reflect the “true” stimulus prior, in which case
these differences in stimuli and model systems should indeed
matter little because the stimulus prior is largely a property of
the environment and not the observer or the particular stimulus
pattern. Recent studies have demonstrated that it is possible to
quantitatively characterize the accuracy with which a perceptual
variable is represented in the human brain using voxel-level
encoding models of functional magnetic resonance imaging sig-
nals (Van Bergen et al., 2015). Future work may exploit this tech-
nique to validate and potentially refine our estimates of the
neural prior in human subjects. Such work would also permit a
more thorough investigation of individual differences at both be-
havioral and neural levels through matched task and stimulus
designs.

The specific shape of the extracted neural and behavioral
prior depends on the assumed efficient coding objective. The
chosen efficient coding constraint (Eq. 1) results from the objec-
tive to maximize the mutual information between neural
representation and stimulus (Wei and Stocker, 2016). It is possi-
ble, although unlikely given the exceptional good quantitative
match, that with a different combination of efficient coding

constraint and loss function, a power-law prior with a different
exponent could also be consistent with both the behavioral and
neural data (see Wang et al., 2012; Morais and Pillow, 2018; Rast
and Drugowitsch, 2020). This is difficult to validate conclusively
without access to an accurate characterization of the stimulus
prior of visual speed, as the search space over all possible combi-
nations is extensive. Previous work has shown, however, that the
encoding characteristics in early visual cortex for visual stimulus
variables for which good estimates of the stimulus prior exist
(e.g., luminance contrast and local orientation) are closely
accounted for by the mutual information maximization objective
(Wang et al., 2012).

An important assumption of our observer model is that the
neural and behavioral priors not only match but are also consist-
ent with the statistical distribution of visual speeds in the natural
environment (“stimulus prior”). As such, our results predict that
the stimulus prior approximates a power-law distribution that
lies within the range given by the neural and behavioral priors
shown in Figure 8A. However, empirical validation of this pre-
diction by directly measuring the stimulus prior distribution is
rather challenging. Object motion but also the ego motion of the
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observer in terms of its body, head, and eye movements all con-
tribute to the visual motion signal. Thus, the precise characteri-
zation of the visual speed distribution would require accurate
measurements and calibrations of these different types of
motions, as well as of the algorithm used to extract the motion
information from the visual signal. Previous studies have
approximated these relative movements to various degrees and
used different algorithms to extract local visual speed from spa-
tiotemporal images, resulting in different characterization of the
prior distribution (Dong and Atick, 1995; Roth and Black, 2007;
Baker et al., 2011; Sinha et al., 2021). However, common to all
these measured stimulus priors is that they have higher probabil-
ities at slow speeds and form long-tailed distributions. Future
work using more comprehensive data (DuTell et al., 2020) may
provide a better characterization of visual speed priors under
ecologically valid, natural conditions.

We expect our model and analytic approach to be applicable
to any other perceptual variable and task that exhibit characteris-
tic patterns of perceptual biases and discrimination thresholds.
However, of particular interest and posing a strong test of our
model are changes in perceptual bias and threshold that are
induced by spatiotemporal context such as adaptation aftereffects
or the tilt illusion (Clifford et al., 2007; Schwartz et al., 2007,
2009). It is traditionally assumed that these biases are caused by a
mismatch in expectation between encoding and decoding (i.e.,
the “coding catastrophe”; Schwartz et al., 2007), which is in sharp
contrast to one of the main features of our model. Preliminary
results are promising (Wei et al., 2015; Wei and Stocker, 2017).
However, more quantitative analyses are necessary to test how
well the framework can account for the data and what neural
and behavioral priors it will predict.

In summary, within the context of visual speed perception,
we have demonstrated that the Bayesian observer model con-
strained by efficient coding has the potential to provide a unify-
ing framework that can quantitatively link natural scene statistics
with psychophysical behavior and neural representation. Our
results represent a rare example in cognitive science where be-
havioral and neural data quantitatively match within the predic-
tions of a normative theory.
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