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SUMMARY
Dopamine is required for workingmemory, but how it modulates the large-scale cortex is unknown. Here, we
report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic
gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based
large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped
dependence of working memory on dopamine and spatial patterns of persistent activity observed in over
90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by
enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory
trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a
switch from this internal memory state to distributed persistent activity. Our work represents a cross-level
understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive func-
tion distributed across the primate cortex.
INTRODUCTION

Our ability to think through difficult problems without distraction

is a hallmark of cognition. When faced with a constant stream of

information, we must keep certain information in mind and pro-

tect it from distraction. For instance, when at the supermarket

looking for your favorite butter, it is important to keep in mind

its distinctive golden packaging and not be distracted by the

many other dairy products. This brain function is called working

memory. Working memory often engages persistent neural ac-

tivity that is specific to the information that must be remembered.

This mnemonic activity is sustained internally across multiple

cortical and subcortical areas in the absence of external stimula-

tion (Funahashi et al., 1989; Fuster and Alexander, 1971; Guo

et al., 2017; Leavitt et al., 2017; Mejias and Wang, 2021; Men-

doza-Halliday et al., 2014; Murray et al., 2017; Romo et al.,

1999; Romo and Salinas, 2003; Vergara et al., 2016; Wang,

2001; Zhang et al., 2019).

Working memory and the prefrontal cortex are under the influ-

ence of monoaminergic modulation (Goldman-Rakic, 1995;

Robbins and Arnsten, 2009). In fact, depletion of dopamine

from the prefrontal cortex and complete ablation of the prefrontal
3500 Neuron 109, 3500–3520, November 3, 2021 ª 2021 The Author
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cortex cause similar working memory deficits (Brozoski et al.,

1979). Dopamine modulates cortical activity through its recep-

tors. D1 receptors are the most densely expressed dopamine

receptor type in the cortex. Prefrontal neuron activity during

working memory depends on precise levels of activation of D1

receptors, with too little or too much D1 stimulation disrupting

delay period activity (Vijayraghavan et al., 2007; Wang et al.,

2019). However, the density of D1 receptors is known only for

relatively small sections of the monkey cortex (Goldman-Rakic

et al., 1990; Impieri et al., 2019; Lidow et al., 1991; Niu et al.,

2020; Richfield et al., 1989). Because of the shortage of areas

analyzed across studies, it is not clear whether the variation in

D1 receptor densities across cortical areas represents random

heterogeneity or a systematic gradient of cortical dopamine

modulation.

Dopamine receptors are also expressed differently across

different types of inhibitory neurons (Mueller et al., 2018, 2020).

Distinct inhibitory cell types primarily focus their inhibition on

the dendrites or somata of pyramidal cells or on other inhibitory

neurons (Jiang et al., 2015; Tremblay et al., 2016). Through its

differing effects on distinct interneurons, dopamine decreases

inhibition to the somata of pyramidal cells and increases
s. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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inhibition to the dendrites (Gao et al., 2003). An early theoretical

study proposed that inhibition targeted more strongly toward the

dendrites and away from the somata of pyramidal cells could in-

crease the resistance of working memory to distraction (Wang

et al., 2004a). The functional significance of dopamine’s differen-

tial effects on distinct inhibitory neuron types has not yet been

investigated.

In this work, we tackled two open questions. First, how does

dopamine modulate distributed working memory across a

multi-regional large-scale cortical system? Second, in light of

the emphasis on cell types in modern cortical physiology, does

dopamine contribute to robust working memory against distrac-

tors by virtue of differential effects on different neuron classes?

To address these questions, we performed quantitativemapping

of dopamine D1 receptor densities across 109 cortical areas us-

ing in vitro autoradiography and constructed a large-scale

computational model of the macaque cortex that is capable of

performing working memory tasks. The model is built using

retrograde tract-tracing connectivity data and incorporates gra-

dients of D1 receptors and excitatory synapses.Moreover, to our

knowledge, this is the first large-scale cortex model endowed

with three subtypes of inhibitory neurons. Our results suggest

that firing of dopamine neurons can engage distractor-resistant,

stimulus-selective, sustained activity across multiple brain re-

gions in response to behaviorally relevant stimuli. Furthermore,

we extend, from a local area to the multi-regional cortex, an ac-

tivity-silent mechanism that has been proposed for certain forms

of short-term memory trace without persistent activity (Mongillo

et al., 2008; Rose et al., 2016; Wolff et al., 2017). We found that

this scenario relies principally on short-term facilitation of inter-

areal connections but fails to resist distractors. Enhanced dopa-

mine modulation can convert an internal memory trace to an

active persistent activity state needed to filter out distractors.

Therefore, our findings contribute to resolving the current debate

about the two contrasting scenarios that contribute to working

memory (Constantinidis et al., 2018; Lundqvist et al., 2018; Wa-

tanabe and Funahashi, 2014) and under what conditions each

mechanism is implemented (Barbosa et al., 2020; Masse et al.,

2019; Tr€ubutschek et al., 2019).

RESULTS

A hierarchical gradient of dopamine D1 receptors per
neuron across the monkey cortex
We first analyzed D1 and D2 receptor distribution patterns

throughout themacaque brain using in vitro receptor autoradiog-

raphy (Figure S1). Autoradiography enables quantification of

endogenous receptors in the cell membrane through use of

radioactive ligands (Niu et al., 2020; Palomero-Gallagher and

Zilles, 2018; Rapan et al., 2021). The highest densities (in fmol/

mg protein) of both receptor types were found in the basal

ganglia, with the caudate nucleus (D1, 298±28; D2, 188± 30)

and putamen (D1, 273±40; D2, 203±37) presenting consider-

ably higher values than the internal (D1, 97 ±34; D2, 22± 12)

or external (D1, 55 ±16; D2, 30±11) subdivisions of the globus

pallidus. Raw cortical D1 receptor densities ranged from 49±

13 fmol/mg protein in area 4a of the primary motor cortex to

101±35 fmol/mg protein in orbitofrontal area 11l (Figure 1A).
The density of the D2 receptor in the cortex is so low that it is

not detectable with the method used here.

To compare the gradient of D1 receptors with other known

gradients of anatomical organization in the monkey cortex, we

carefully mapped the receptor data (Figure 1A) as well as data

on neuronal density (Figure 1B; Collins et al., 2010) and spine

count (Figure 1C; Elston, 2007) onto the Yerkes19 common

cortical template, to which anatomical tract tracing data (Fig-

ure 1D, i) has been mapped previously (Donahue et al., 2016).

Here we include retrograde tracing data from 40 regions, quan-

tified using the same protocol as in previous publications (Mar-

kov et al., 2014b). This expands the number of injected cortical

areas by 33%, with connections to areas 1, 3, V6, F4, F3, 25,

32, 9, 45A, and OPRO (orbital proisocortex) now included in

the database (downloadable from core-nets.org). We estimated

the cortical hierarchy using laminar connectivity data (Figure 1D,

ii; STARMethods; Markov et al., 2014a), expanding previous de-

scriptions of the cortical hierarchy based on fewer regions (Mar-

kov et al., 2014a; Mejias et al., 2016). A one-dimensional hierar-

chy is probably an oversimplification of the cortical connectivity

structure. Because we have connectivity data for two distinct

sensory modalities, we also calculated a circular embedding of

the connectivity data, with radial distance from the edge repre-

senting the hierarchical position and angular distance between

points representing the inverse of their connectivity strength

(Chaudhuri et al., 2015). In this circular representation, separate

visual and somatosensory hierarchies can clearly be appreci-

ated, with association regions falling at angles off the main sen-

sory hierarchy axes (Figure 1E).

To facilitate functional interpretation, we divided D1 receptor

density by neuron density (Collins et al., 2010) to allow estima-

tion of the degree to which dopamine modulates individual neu-

rons across the cortex. D1 receptor density per neuron peaked

in the parietal and frontal cortex and was relatively low in the

early sensory cortex (Figure 1F). There was a strong positive

correlation between D1 receptor density per neuron and the

cortical hierarchy (Figure 1G; r = 0.81). Because of spatial auto-

correlation between cortical features (i.e., nearby parts of the

cortex tend to have a similar anatomy), it is possible to detect

spurious correlations between distinct features of brain anat-

omy. To account for this, we generated 10,000 surrogate

maps with similar spatial autocorrelation to the hierarchy map

(Burt et al., 2020). None of these surrogate maps were as

strongly correlated with the D1 receptor density map as the hi-

erarchy, giving a p value of less than 0.0001 for the D1 recep-

tor-hierarchy correlation. There was no significant relationship

between D1 receptor expression and whether a cortical area

had a granular layer IV (Wilcoxon rank-sum Z = 0.39, p =

0.70) or to the degree of externopyramidalization (Kruskal-

Wallis c2 = 1.47, p = 0.48; Goulas et al., 2018; Sanides,

1962; Figure S2). This pattern of receptor expression suggests

that dopamine principally modulates areas contributing to

higher cognitive processing.

A cortical circuit with three types of inhibitory neurons
modulated by dopamine
Webuilt a model of a local cortical circuit that contains pyramidal

cells and three types of inhibitory neurons (Figure 2A). The
Neuron 109, 3500–3520, November 3, 2021 3501
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Figure 1. A gradient of dopamine D1 recep-

tors per neuron across the monkey cortex

(A) i: 109 cortical regions of the Julich Macaque

Brain Atlas, identified by receptor and cytoarchi-

tecture. ii: D1 receptor density. The receptor density

shown here does not take into account differences

in neuron density across areas.

(B) i:Collinsetal., (2010)divided themacaquecortex

into 42 slabs of tissue, here mapped onto the

Yerkes19 surface. ii: neuron density across the

cortex.

(C) i: injection sites for the studies of dendritic spine

density by Elston (2007). ii: number of dendritic

spines on the basal dendrites of layer III pyramidal

cells.

(D) i: 40 injectedareas in the retrograde tract-tracing

database of Markov et al. (2014b). ii: cortical hier-

archy.

(E) Circular embedding of the cortical hierarchical

connectivity structure. Radial distance to the center

represents the hierarchical position of the area, with

the areas lowest in thehierarchy closest to the edge.

Angular distance between areas represents the in-

verse of connectivity strength (fraction of labeled

neurons - FLN), so that areas that are plotted at

similar angles are more strongly connected to each

other. Colors represent the angle on the circle. Clear

visual and somatosensory hierarchies emerge from

this circular embedding of the connectivity data

(highlighted with arrows). Association areas lie at

angles off the main visual and somatosensory hier-

archies.

(F) The density of D1 receptors divided by neuron

density. Regions that have not yet been measured

are shown in gray.

(G) There was a strong positive correlation between

the D1 receptor density per neuron and the cortical

hierarchy. The spatially corrected p value is the

fractionof randomlygenerated surrogatemapswith

spatial smoothness matched to the hierarchy map

that show a stronger Pearson correlation (negative

or positive) with the D1 receptor map than the hier-

archy map itself.

See also Figures S1 and S2.
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cortical circuit is based on a disinhibitory motif that was originally

predicted theoretically (Wang et al., 2004a), with details of the

connectivity structure chosen to reflect recent experimental find-

ings (STAR Methods).

In our model, dopamine acted by increasing the synaptic

strength of inhibition to the dendrite and reducing the

synaptic strength of inhibition to the cell body of pyramidal

cells (Figure 2B; Gao et al., 2003). In addition, dopamine

increased the strength of transmission via N-methyl-D-aspar-

tate (NMDA) receptors (Seamans et al., 2001). On the

other hand, high stimulation of D1 receptors resulted in

increased adaptation in excitatory cells (potentially an M-cur-

rent, via KCNQ potassium channels; Arnsten et al., 2019),

mimicking the net inhibitory effect of high concentrations of

D1 agonists.
3502 Neuron 109, 3500–3520, November 3, 2021
A large-scale model of the macaque cortex
incorporating multiple macroscopic gradients
We then built a large-scale model of the macaque cortex. We

placed the local circuit in each of the 40 cortical areas (Figure 2A,

right). Properties of these local circuits varied across areas in the

form of macroscopic gradients (Wang, 2020) of long-distance

connectivity (set by tracing data), strength of excitation (set by

the spine count), and modulation by D1 receptors (set by the re-

ceptor autoradiography data). We defined the connections be-

tween areas using the quantitative retrograde tract-tracing

data. In the model, inter-areal connections are excitatory and

target the dendrites of pyramidal cells (Petreanu et al., 2009). In-

ter-areal excitatory connections also target calretinin (CR)/vaso-

active intestinal peptide (VIP) cells to a greater degree than par-

valbumin (PV) or calbindin (CB)/somatostatin (SST) cells (Lee
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Figure 2. An inverted U relationship between D1 receptor stimulation and distributed frontoparietal delay period activity

(A) Left: local circuit design. The circuit contains two populations of excitatory cells (red and blue), each selective to a particular spatial location. The cell bodies

(triangles) and dendrites (cylinders) are modeled as separate compartments. PV (green), CB/SST (purple), and CR/VIP (light brown) cells have characteristic

connectivity patterns. Right: the local circuit is placed at each of 40 cortical locations (various colors). Cortical areas differ in (1) inter-areal connections, (2) spine

count, and (3) dopamine D1 receptor density.

(B) Stimulation of D1 receptors affects the cortical circuit via (1) an increase in inhibition targeting the dendrites with a corresponding decrease in inhibition to the

somata of pyramidal cells, (2) an increase in NMDA-dependent excitatory transmission for low to medium levels of stimulation, and (3) increasing adaptation for

high levels of stimulation.

(C) Structure of the task. The cortical network was presented with a stimulus it had to maintain through a delay period.

(D) Left: mean firing rate in the frontoparietal network at the end of the delay period for different levels of dopamine release. Right: mean delay period activity of

cortical areas as a function of dopamine release. All areas shown display persistent activity in experiments (Leavitt et al., 2017).

(E) Activity is shown across the cortex at different stages in the workingmemory task (left to right), with increasing levels of dopamine release (from top to bottom).

Red represents activity in the excitatory population sensitive to the target stimulus. Very low or very high levels of dopamine release resulted in reduced

propagation of stimulus-related activity to frontal areas and a failure to engage persistent activity. Mid-level dopamine release enables distributed persistent

activity.

(F) Time courses of activity in selected cortical areas. The horizontal bars indicate the timing of cue (red) input to area V1.

DA, cortical dopamine availability. See also Figures S3 and S4 and Video S1.
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et al., 2013; Wall et al., 2016). The frontal eye fields (FEF) have an

unusually high density of CR (here CR/VIP) cells (Pouget et al.,

2009). To account for this, we increased the proportion of inter-

areal input to CR/VIP cells in FEF and reduced the strength of

input to PV and CB/SST cells.
An inverted U relationship between cortical D1 receptor
stimulation and distributed working memory activity
We simulated the large-scale cortical model during performance

of a working memory task (Figure 2C) with different levels of

cortical dopamine availability. In simulations, stimulus-selective
Neuron 109, 3500–3520, November 3, 2021 3503
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Figure 3. Inter-areal connectivity and D1 receptor density underlie working memory activity and performance

(A) There is a strong overlap (18 of 19, 95%) between the pattern of persistent activity seen experimentally (Leavitt et al., 2017) and that predicted by the model.

(B) The results of 10,000 simulations using shuffled inter-areal connections (green), 10,000 simulations using shuffled patterns of D1 receptor expression (orange),

and 10,000 simulations using shuffled patterns of dendritic spine counts (purple). The position on the x axis denotes the overlap between the simulated delay

activity pattern and the experimental activity pattern identified by Leavitt et al. (2017) for each simulation based on shuffled anatomical data. The red vertical line

denotes the overlap between the simulation based on the real anatomy data and the experimental results. The bottom half of the image shows the results of

(legend continued on next page)
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activity propagated from the visual cortex to the temporal, pari-

etal, and frontal cortex. Activity in the visual cortex was relatively

insensitive to dopamine (Figures 2E and 2F). Dopamine modula-

tion had little to no effect on the initial peak of activity in early vi-

sual areas, but it did modulate the later peak of activity in these

areas (Figure S3), consistent with a specific role of feedback

connections in late visual activity (Self et al., 2012). In all cases,

there was a strong transient response in visual areas prior to

rapid return to baseline firing rates. This is similar to the response

seen in neurons recorded from area V1 in behaving monkeys

(van Vugt et al., 2018). We observed similar transient activity in

somatosensory areas in response to stimulus input to the so-

matosensory cortex (Figure S4), as seen experimentally (Romo

and Rossi-Pool, 2020). Delay period activity in a large network

of prefrontal, lateral parietal, and temporal areas showed an in-

verted U relationship with dopamine levels (Figure 2D). A mid-

range level of dopamine release engaged a distributed pattern

of persistent activity throughout these areas (Figures 2E and

2F), but release that was too low or too high only led to a transient

response (Figure 2F). A similar pattern of delay period activity

was observed following somatosensory input (Figure S4). The

inverted U relationship between D1 receptor stimulation and

working memory activity has been shown locally in the prefrontal

cortex in experimental and computational studies (Brunel and

Wang, 2001; Vijayraghavan et al., 2007) but has not been

described previously throughout the distributed cortical system.

Inter-areal connectivity determines the distributed
working memory activity pattern
We next compared the pattern of delay period activity in the

model with delay period activity observed in over 90 electro-

physiology studies (Leavitt et al., 2017). We chosemodel param-

eters that would produce persistent activity in the prefrontal

cortex, but we did not fit the model to the experimental data.

Of the 19 cortical areas in which such activity has been assessed

during the delay period in at least three experimental studies, 18

were in agreement between the simulation and experimental

results (c2 = 15:03;p= 0:0001 Figure 3A). Overall, the experimen-

tally observed persistent activity from numerous studies is repro-

duced, validating the model. This allows us to inspect the

anatomical properties that underlie the distributed activity

pattern and gain insight into the brain mechanisms that may pro-

duce it.

We repeated model simulations after shuffling the anatomical

data. The delay period activity patterns for 30,000 simulations

based on the shuffled anatomy were compared with the pattern
individual simulations based on shuffled anatomical data. The top half of the im

important determinant of the working memory activity pattern. The p value is ca

produce a delay activity pattern that overlaps with the experimental data as well

(C) Lesions to areas such as 46d and LIP led to reduced delay-period firing across

an optimal level of D1 receptor stimulation could restore close to normal working

(D) The level of disruption to distributed working memory activity following lesio

frontoparietal network summed across all dopamine release levels.

(E) The percent loss of delay period activity throughout the cortex following a les

(F) The percent loss of delay period activity following progressively bigger lesion

(G) The percent of failed trials, across all dopamine levels, on a working memory

(H) Lesions to areas with a higher D1 receptor density tended to have a larger ef

D1R, D1 receptor density. See also Figure S5 and Tables S7 and S8.
observed experimentally. Ten thousand simulations were run us-

ing shuffled inter-areal connections, shuffled D1 receptor

expression, and shuffled dendritic spine expression separately.

The overlap between the experimental persistent activity pattern

and the model persistent activity pattern was strongly depen-

dent on the inter-areal connections (p = 0.0004) but not on the

pattern of D1 receptors (p = 0.71) or dendritic spine count (p =

0.46) (Figure 3B). This analysis suggests that the edges between

nodes in the network (i.e., the inter-areal connections) are impor-

tant for defining the spatial pattern of delay period activity. Next

we asked how the nodes themselves (i.e., individual cortical

areas) contribute differentially to distributed working memory.

Working memory deficits are most severe following
lesions to prefrontal areaswith high D1 receptor density
We next quantified the degree to which focal lesions to individual

areas in the model disrupted persistent activity during the work-

ing memory task (without distractors). The effect depended on

the lesioned area and the level of cortical dopamine (Figure 3C).

Lesions to prefrontal and posterior parietal areas caused the

greatest reductions in delay period firing rates (Figure 3D,E). Le-

sions to frontal areas caused a significantly greater reduction in

delay period firing rates than lesions to parietal areas (Mann-

Whitney U = 46.0, p = 0.027). We tested the effects of progres-

sively larger lesions to the frontal and parietal cortex. To increase

the size of the lesions, for each lobe we first lesioned the area

that caused the biggest drop in delay activity when lesioned indi-

vidually and then additionally lesioned the area that caused the

second biggest drop and so on (frontal lesion 1: 46d, lesion 2:

46d+8B, lesion 3: 46d+8B+8 m etc.; parietal lesion 1: LIP, lesion

2: LIP+7m, lesion 3: LIP+7m+7B. etc.). When lesioning two fron-

tal regions, the mnemonic delay period activity was completely

destroyed throughout the cortex, so the network was no longer

able to perform the task. In contrast, progressively larger lesions

of the parietal cortex caused only a gradual decrease in fronto-

parietal delay activity, and even when the entire parietal cortex

was removed (10 areas), sufficient residual mnemonic delay

period activity remained to allow the cue stimulus to be decoded

(Figure 3F).

We subsequently addressed the ability of the model to main-

tain cue-specific delay period activity in the presence of distrac-

tors following precise lesioning of each cortical area. We

analyzed trials across all levels of cortical dopamine availability.

Lesions to three prefrontal areas (8m, 46d, and 8B), but not other

areas, caused complete disruption of distractor-resistant work-

ing memory activity in all trials. Lesions to many other areas
age shows the densities. The pattern of inter-areal connections was the most

lculated as the fraction of simulations based on shuffled anatomical data that

as (or better than) the original simulation.

for all levels of dopamine release. Following some lesions (such as to area 8B),

memory activity in the remaining network.

ns to each area, quantified as the total loss of working memory activity in the

ion to each area.

s to frontal and parietal areas.

task with a distractor following lesions to each cortical area.

fect on working memory activity.
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caused complete reduction of distractor-resistant working

memory activity for some trials (corresponding to a particular

dopamine range) but not others. The seven lesions causing the

greatest disruption of working memory performance were in

the frontal cortex (six prefrontal areas and premotor area F7; Fig-

ure 3G). The reduction in performance was significantly greater

for lesions to frontal cortical areas than parietal areas (Mann-

Whitney U = 48.5, p = 0.032). Our simulations thus suggest

that (1) lesions to the prefrontal and posterior parietal cortex

can cause a significant disruption of delay period activity, (2)

frontal lesions have a greater effect on behavior than parietal le-

sions, and (3) smaller lesions, particularly to the prefrontal cortex,

can significantly disrupt performance on more difficult working

memory tasks, such as those with distractors. In contrast, larger

lesions are required to disrupt performance on simple working

memory tasks.

Lesions to area V1 and V2 led to complete loss of visual work-

ing memory activity (Figure 3D). However, this was because of

the fact that a visual stimulusmust go through area V1 to gain ac-

cess to the working memory system. We confirmed this by

showing that lesions to V1 and V2 had no effect on working

memory when somatosensory stimuli were used (with stimulus

presented to primary somatosensory area 3). In the somatosen-

sory workingmemory task, lesions to early somatosensory areas

and frontoparietal network areas caused memory deficits (Fig-

ure S5). This clearly separates early sensory areas, which are

required for signal propagation to the working memory system,

from core cross-modal working memory areas in the prefrontal

and posterior parietal cortex.

D1 receptor density (F = 4.72, p = 0.036; Figure 3H) was the

strongest anatomical predictor of the lesion effects, andaddinghi-

erarchy or spine count to the model did not significantly improve

the fit. Thus, our model predicts that lesions to areas with a higher

D1 receptor density aremore likely to disruptworkingmemory ac-

tivity. This prediction can be tested experimentally.

Dopamine shifts between activity-silent and persistent
activity modes of working memory
Recent experimental andmodeling results show that some delay

tasks can be solved with little or no persistent activity (Mongillo

et al., 2008; Rose et al., 2016; Watanabe and Funahashi, 2014;

Wolff et al., 2017). This has spurred a debate about whether

persistent activity or ‘‘activity-silent’’ mechanisms underlie work-

ingmemory (Constantinidis et al., 2018; Lundqvist et al., 2018). Is

dopamine modulation throughout the cortex relevant to this
Figure 4. A dopamine-dependent shift between distractible activity-sil

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.n

(A) i: task structure. A target stimulus was followed by a delay and a probe stim

propagated from V1 through the hierarchy and was maintained in persistent activ

and in selected areas (right). Bottom: synaptic efficacy. iii: for low-level dopamin

some frontoparietal areas. There was no persistent activity through the delay perio

target stimulus was regenerated throughout the frontoparietal cortex. Bottom: the

the delay period, mostly in connections from sensory areas.

(B) i: task structure. A target stimulus was followed by a delay period, a distractor,

target-related activity was maintained in persistent activity throughout the frontop

of the trial. iii: for low-level dopamine release, frontoparietal activity related to th

stimulus.

See also Figure S6.
debate? We endowed the model with short-term plasticity to

assess the possibility of activity-silent working memory in the

large-scale network. Short-term plasticity was implemented at

all synapses between excitatory cells (using the same parame-

ters asMongillo et al., 2008) and from excitatory to CB/SST cells.

We investigated activity-silent representations by ‘‘pinging’’ the

systemwith a neutral stimulus and reading out the activity gener-

ated in response, similar to the experimental protocol in Wolff

et al. (2017) (Figure 4A, i). For optimal midlevels of dopamine

release (Figure 4A, ii), the model generated persistent activity

that was very similar to the network without short-term plasticity.

The strong and distributed activation of the frontal and parietal

cortex is reminiscent of the ignition response to consciously

observed stimuli (van Vugt et al., 2018).

For low and high levels of dopamine release, there was no

persistent activity (Figure 4A, iii). However, when we pinged

the system with a neutral stimulus, activity relating to the target

cue was generated transiently throughout the frontoparietal

network (Figure 4A, iii), suggesting that a memory of the target

stimulus was stored internally. During the delay period, the syn-

aptic efficacy increased at connections between neurons coding

for the target stimulus. Previous models of activity-silent short-

termmemory have focused on local synaptic changes in the pre-

frontal cortex (Mongillo et al., 2008). In our model, most of the

increase in synaptic efficacy was in synaptic connections from

neurons in sensory areas (Figure 4A, iii). We then restricted

short-term synaptic plasticity to presynaptic neurons outside

of the frontoparietal network. Pinging this system again resulted

in activation of the target-related activity throughout the fronto-

parietal network (Figure S6). Next we performed the opposite

manipulation and restricted short-term synaptic plasticity to pre-

synaptic neurons in the frontoparietal network. Pinging that

system did not lead to activation of the frontoparietal network

(Figure S6). This suggests that synaptic plasticity at connections

from (presynaptic) prefrontal cortical neurons is not required for

activity-silent memory. Finally, we restricted short-term plasticity

to local connections. In that network, activity-silent memory

recall also failed (Figure S6). This suggests that short-term facil-

itation in inter-areal feedforward connections from early sensory

areas to the frontal and parietal cortex is a potential substrate for

‘‘activity-silent’’ memory in the absence of a strong initial pre-

frontal response to the stimulus.

Why does the brain have two parallel systems for holding

items in short-term memory? To explore this question, we simu-

lated the model using a ping protocol (Wolff et al., 2017) with a
ent and distractor-resistant persistent activity states

euron.2021.08.024.

ulus. ii: for mid-level dopamine release, activity relating to the target stimulus

ity throughout the frontoparietal network. Top: firing rates on the surface (left)

e release, activity (top) in response to the stimulus was transient in visual and

d. However, in response to the probe stimulus, activity representing the original

memory for the stimulus was stored as an increase in synaptic efficacy through

another delay period, and a probe stimulus. ii: for mid-level dopamine release,

arietal network throughout the delay period through the distractor until the end

e most recent stimulus (i.e., the distractor) was regenerated during this probe
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distractor. After a behaviorally relevant cue and during the delay

period, we introduced a distractor that should be filtered out by

the network, followed by a neutral ping stimulus (Figure 4B, i). For

mid-level dopamine release, persistent activity coding for the

target stimulus is engaged andmaintained through the distractor

and ping (Figure 4B, ii). The distractor is represented transiently

in inferior temporal (IT) and lateral intraparietal cortex (LIP) (thus

replicating the experimental results in Suzuki and Gottlieb, 2013)

but does not reachmost of the frontoparietal network. In the low-

and high-dopamine cases, during the ping, the activity-silent

mechanism regenerates activity related to the last encoded stim-

ulus, the distractor, in the frontal and parietal cortex (Figure 4B,

iii). Thus, pinging from the activity-silent state scenario always re-

calls the latest item but cannot ignore a distractor. Therefore,

dopamine release may serve to encode salient items in working

memory and protect them from distraction.

Dopamine increases distractor resistance by shifting
the subcellular target of inhibition
How does dopamine protect working memory from distraction?

To examine this question, we analyzed activity within CR/VIP

and CB/SST neurons during a working memory task with a dis-

tractor (Figure 5A). CB/SST and CR/VIP neurons are in competi-

tion because they mutually inhibit each other. When CB/SST cell

firing is higher, pyramidal cell dendrites are relatively inhibited.

Conversely, when CR/VIP cell firing is higher, pyramidal cell den-

drites are disinhibited. Each cortical area in the model contains

two selective populations of pyramidal, CB/SST, and CR/VIP

cells. We first analyzed trials in which the model successfully ig-

nores the distractor. In the target-selective populations, CR/VIP

neurons fire at a much higher rate than CB/SST neurons (Figures

5B and 5C). Thus, the dendrites of the target-selective pyramidal

cells are disinhibited, allowing inter-areal target-related activity to

flow between cortical areas. In the distractor-selective popula-

tions, throughout the frontoparietal network, CB/SST neurons

fire at a slightly higher rate than CR/VIP cells. Thus, activity from

other cortical areas is blocked from entering the dendrites of dis-

tractor-selective pyramidal cells in the frontal and parietal cortex.

To test the importance of this effect, we transiently inhibited

CB/SST2 cells in the frontoparietal network during presentation

of the distractor (CB/SST2; Figure 5D). This transient inhibition of
Figure 5. Dopamine increases distractor resistance by shifting the sub

(A) Task structure. A target stimulus was followed by a delay, a distractor stimul

(B) For mid-level dopamine release, persistent target-related activity (red) was pre

end of the trial. Each cortical area contains populations of excitatory, CB/SST, an

separate populations sensitive to the distractor stimulus (E2, CB/SST2, and CR/

(B andC) Throughout the delay period and distractor stimulus, activity in CR/VIP1

activity in CR/VIP2 is slightly lower than in CB/SST2, leading to inhibition of the E

(D) We transiently inactivated CB/SST2 populations in the frontoparietal netwo

populations were inhibited, the network became distractible.

(E) We removed the dopamine modulation of somatic and dendritic inhibition

adaptation unchanged.

(F and G) Without the dopamine-dependent switch toward dendritic inhibition, the

end of the trial.

(H) Consistently across dopamine levels, higher somatic and lower dendritic inhibi

somatic and higher somatic inhibition were associated with distractor-resistant

persistent activity (white). The levels of dendritic and somatic inhibition associa

marked by a black square.

See also Figure S7.
CB/SST2 cells was sufficient to switch the network to a distract-

ible state, with the distractor stimulus held in working memory

until the end of the trial (Figure 5D).

Because dopamine increases the strength of inhibition to den-

drites and decreases inhibition to somata, it is possible that this

aspect of dopamine modulation enhances distractor resistance

of the system. We removed this effect of dopamine modulation

while leaving dopamine’s effects on NMDA and adaptation cur-

rents as before (Figure 5E). We repeated the working memory

task in the presence of the distractor with a mid-level of dopa-

mine, which normally results in distractor-resistant working

memory. Without the dopamine-dependent shift of inhibition

from the soma to the dendrite, the system becomes distractible

(Figures 5F and 5G). Previous modeling work has shown that

persistent activity can depend on local recurrent excitatory con-

nections or a combination of local and inter-areal loops (Mejias

and Wang, 2021; Murray et al., 2017). We searched the param-

eter space for the strength of local and inter-areal excitatory-

to-excitatory connections and found that, when a subset of local

cortical areas was endowed with sufficient recurrent excitation

to generate persistent activity in isolation (e.g., gself
E;E = 0:33nA,

mE;E = 1:25), high somatic inhibition and low dendritic inhibition

were generally associated with distractibility (Figure 5H; Fig-

ure S7). Low somatic and high dendritic inhibition were associ-

ated with distractor-resistant behavior (Figure 5H; Figure S7).

Therefore, the action of dopamine in shifting inhibition from the

soma to the dendrite (Gao et al., 2003), via its strong effect on

CB/SST cells (Mueller et al., 2020), prevents distractor-related

activity from sensory areas disrupting ongoing persistent activity

in the frontoparietal network.

Learning to optimally time dopamine release through
reinforcement
In real life, we experience a constant flow of sensory inputs, and

our working memory system must be flexible in determining the

timing of relevant versus irrelevant information. Dopamine neu-

rons fire in response to task-relevant stimuli (Schultz et al.,

1993) but should not fire in response to task-irrelevant distracting

stimuli, regardless of timing.We hypothesized that correct timing

of dopamine release could be learned by simple reward-learning

mechanisms.
cellular target of inhibition

us, and another delay period.

sent in the frontoparietal network through the delay and the distractor until the

d CR/VIP cells that respond to the target stimulus (E1, CB/SST1, and CR/VIP1),

VIP2), and PV cells.

is higher than in CB/SST1, leading to disinhibition of the E1 dendrite. In contrast,

2 dendrite.

rk during presentation of the distractor stimulus. On trials in which CB/SST2

while leaving the effects of dopamine on NMDA-dependent excitation and

network became distractible, with distractor-related activity dominating at the

tion were associated with distractible workingmemory (blue). In contrast, lower

working memory (red). High dendritic and high somatic inhibition result in no

ted with the standard dopamine modulation used in the rest of the paper are
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Figure 6. Reward-dependent learning of dopamine release appropriately engages persistent activity mechanisms to enable reversal

learning

(A) We designed a simplified VTA model and connected this bidirectionally to the large-scale cortical model. The VTA contained dopaminergic and GABAergic

neuron populations. Dopamine was released dynamically depending on dopaminergic neuron activity. The strength of cortical inputs to VTA dopaminergic and

GABAergic cells was updated at the end of each trial on the basis of trial outcome and choice.

(B) We simulated a task with two cues (red and blue) followed by a probe stimulus. The rewarded stimulus changed every 30 trials. Following each switch, after a

few trials, the network learns to store the appropriate stimulus in distributed persistent activity. This depends on high dopamine release in response to the re-

warded stimulus and low release in response to the unrewarded stimulus.
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We created a simplified model of the ventral tegmental area

(VTA) with GABAergic and dopaminergic neurons and con-

nected this to our large-scale cortical model (Figure 6A) (cf.

Braver and Cohen, 2000). Cortical pyramidal cells target

GABAergic and dopaminergic cells in the VTA (Soden et al.,
3510 Neuron 109, 3500–3520, November 3, 2021
2020;Watabe-Uchida et al., 2012). Dopaminergic cells are also

strongly inhibited by local VTA GABAergic cells (Soden et al.,

2020). Dopamine in the model is released in the cortex in

response to VTA dopaminergic neuron firing, and cortical dopa-

mine levels slowly return to baseline following cessation of
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dopaminergic neuron firing (Muller et al., 2014). In the model, the

synaptic strengths of cortical inputs from the selected popula-

tions to VTA populations are increased following a reward and

weakened following an incorrect response (Harnett et al., 2009;

Soltani and Wang, 2006).

We tested the model on a variant of the target-distractor-ping

task introducedearlier (Figures 4B, i, and 6B). For the first 30 trials,

the first stimulus (cue 1, red) was rewarded (rule 1). For the

following 30 trials, the second stimulus (cue 2, blue) was rewarded

(rule2). For thefinal30 trials,weswitchedback to rule1 (Figure6B).

By the seventh trial of the firstblock, distractor-resistant persistent

activity emerged, and the first cue was remembered correctly.

This behavior persisted until the next block. Following a few trials

of the second block, dopamine release in response to the first

stimuluswas reduced, and neural populations throughout the cor-

tex only transiently represented the first (now irrelevant) stimulus.

However, dopamine response to the second stimulus increased

so that persistent activity representing the second stimulus was

engaged. Following the second rule switch, the system again

switched back to engaging persistent activity in response to the

first cue. Additionally, the number of trials to engage appropriate

persistent activity decreased gradually with each switch. We

further tested the model on a version of the task in which the rele-

vant red cue could be shown first or second within a block before

the blue cue became relevant in the secondblock. Themodelwas

also able to learn this task, although it took more trials (10–15) to

learn the switch (for the first few blocks). Thus, bymeans of simple

reward-learning mechanisms, the optimal timing of dopamine

release can be learned, allowing flexible engagement of distrib-

uted persistent activity in working memory.

DISCUSSION

We uncovered amacroscopic gradient of dopamine D1 receptor

density along the cortical hierarchy. By building a novel anatom-

ically constrained model of the monkey cortex, we showed how

dopamine can engage distributed persistent activity mecha-

nisms and protect memories of behaviorally relevant stimuli

from distraction. This work leads to new predictions that would

not have been possible with local circuit models. For example,

the model shows that dopamine’s enhancement of inhibition

fromCB/SST-expressing cells to the dendrites of pyramidal cells

blocks distracting sensory information from entering the fronto-

parietal working memory network. Second, when an initial stim-

ulus fails to robustly activate the prefrontal cortex, we found that

the memory of the original stimulus can be recalled through an

activity-silent synaptic mechanism in inter-areal connections

from the sensory to the frontoparietal cortex. Last, our model

predicts that dopamine can switch between activity-silent and

distributed persistent activity mechanisms, and the timing of

dopamine release could be learned through reinforcement.

This suggests that distributed persistent activity may be

engaged for behaviorally relevant stimuli that need to be remem-

bered and protected from distractors.

A gradient of D1 receptors along the cortical hierarchy
We used quantitative in vitro receptor autoradiography to create

a high-resolution, high-fidelity map of cortical dopamine recep-
tor architecture. The dopamine system can also be imaged

in vivo using positron emission tomography (PET) and single

photon emission computed tomography (SPECT) scans. These

scans can provide information regarding individual and group

differences but are limited in spatial resolution and signal-to-

noise ratio (Abi-Dargham et al., 2002; Froudist-Walsh et al.,

2017a; Roffman et al., 2016; Slifstein et al., 2015) and are often

unreliable for cortical measurements (Egerton et al., 2010; Farde

et al., 1988). It is now possible to map the expression of genes

coding for dopamine receptors across the brain. Gene expres-

sion methods have certain advantages, especially RNA

sequencing, which can provide cell-specific data. However,

mRNA expression is not always closely related to or even posi-

tively correlated with the receptor density at the cell membrane

(Arnatkeviciute et al., 2019; Beliveau et al., 2017). Receptor den-

sity at the membrane is the functionally important quantity and is

measured here directly. The map of D1 receptor density here

greatly expands previous descriptions of D1 receptor densities

(Goldman-Rakic et al., 1990; Impieri et al., 2019; Lidow et al.,

1991; Niu et al., 2020; Richfield et al., 1989). We show that D1 re-

ceptor density increases along the cortical hierarchy, peaking in

the prefrontal and posterior parietal cortex. A previous study of

12 cortical areas suggested a posterior-anterior gradient of D1

receptor expression (Lidow et al., 1991). Here we assess D1 re-

ceptor density in 109 cortical areas, take into account variation in

neuron density across the cortex, and show that the D1 receptor

gradient more closely follows the cortical hierarchy than a strict

posterior-anterior gradient. The distinction is clear, with higher

levels of D1 receptor density per neuron in areas of the posterior

parietal cortex than the somatosensory and primary motor cor-

tex. Future work is required to test the degree to which gradients

of gene expression accurately capture the receptor gradient (Be-

liveau et al., 2017; Hurd et al., 2001). The gradient of dopamine

D1 receptors is similar to gradients of other anatomical and func-

tional properties described across the cortex, many of which in-

crease or decrease along the hierarchy (Burt et al., 2018; Fulcher

et al., 2019; Goulas et al., 2018; Margulies et al., 2016; Sanides

1962; Shafiei et al., 2020; Wang 2020). We observed some inter-

esting patterns of D1R density per neuron (Figure 1F), such as a

gradual caudorostral increase within the prefrontal cortex, which

resembles previously reported gradients of plasticity, laminar

connectivity, and abstraction (Badre and D’Esposito 2009; Riley

et al., 2018; Vezoli et al., 2021). Because of the small number of

animals and relatively similar D1R expression levels in several

areas of the frontal and parietal cortex, comparison of D1R den-

sity between pairs of areas is difficult. As shown originally in Mar-

kov et al. (2014a), the hierarchy itself is steep for early sensory

areas and becomes shallower for higher-association areas.

Therefore, the exact positions of areas like LIP or 10 are not as

robustly distinguishable as those of V1, V2, and V4. Nonetheless,

we expect the general pattern of an increase in D1R density per

neuron along the cortical hierarchy to hold. Although the D1R la-

beling per neuron as well as synaptic excitation and inhibition

display a smooth gradient, quantitative variations of circuit prop-

erties can give rise to a non-smooth pattern of persistent activity

along the cortical hierarchy through a phenomenon akin to bifur-

cations described by the theory of nonlinear dynamical systems

(Mejias and Wang, 2021; Wang, 2020). Such a sudden transition
Neuron 109, 3500–3520, November 3, 2021 3511
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was observed in amonkey experiment where elevated persistent

activity associated with working memory was absent in the mid-

dle temporal area (MT) but significantly present one synapse

away in the nearby medial superior temporal area (MST) (Men-

doza-Halliday et al., 2014). Simultaneous recording from many

parcellated areas using new tools, such as Neuropixels (Jun

et al., 2017), from behaving animals could systematically test

our model prediction in future experiments. This increasing

gradient of dopamine receptors along the cortical hierarchy is

a major anatomical basis by which dopamine can modulate

higher cognitive processing.

An inverted U relationship between dopamine and
distributed working memory activity
Previous experimental and modeling studies have shown an in-

verted U relationship between D1 receptor stimulation and

persistent activity in the prefrontal cortex in monkeys performing

working memory tasks (Brunel and Wang, 2001; Vijayraghavan

et al., 2007; Wang et al., 2019). Dopamine activity in the VTA is

relatively low during the delay period but still has an inverted U

shape relationship with short-term memory performance in the

rat (Choi et al., 2020). In our model, this may be interpreted as

the VTA continuing to provide low-level dopamine to the cortex

to maintain cortical dopamine levels within the appropriate

bounds for distributed persistent activity. We found dense D1

and D2 receptor labeling in the striatum. However, we focused

our working memory modeling on the cortex and VTA. Notably,

optogenetic manipulation of substantia nigra pars compacta

dopamine neurons (which principally target the striatum) does

not have specific short-term memory effects (Choi et al., 2020).

This suggests that cortical rather than striatal dopamine release

is likely to be more important to short-term memory. By con-

structing a novel large-scale model based on the D1 receptor

map and tract-tracing data, we found that the invertedU relation-

ship between D1 receptor stimulation and persistent activity held

across the frontal and parietal cortex during working memory.

The working memory activity pattern was strikingly similar to

that seen experimentally, according to a meta-analysis of 90

electrophysiology studies of delay period activity in the monkey

cortex (Leavitt et al., 2017). Analyzing the model showed that the

pattern of inter-areal connections was the strongest determinant

of the pattern of working memory activity.

Noudoost and Moore (2011) found that injecting a D1 antago-

nist into FEF led to an increase in firing rates in V4. Similarly, in

our model, when cortical dopamine levels are close to the

optimal range for working memory (i.e., the peak of the inverted

U), then reducing D1 receptor stimulation via an antagonist

would lead to an increase in V4 activity during the second

peak of the response to visual stimulation (Figure S3). However,

our model focused on distributed working memory in a large-

scale cortical system and was not built to uncover mechanisms

of attention or decision-making. Recent electrophysiology and

modeling studies of non-human primate attention have sug-

gested that the dominant net effect of attention on neural activity

in the sensory cortex is inhibition (Huang et al., 2019; Yoo et al.,

2021). This may be consistent with subtle enhancement of firing

for neurons whose receptive field is in the focus of attention,

combined with greater inhibition of neurons with nearby recep-
3512 Neuron 109, 3500–3520, November 3, 2021
tive fields. We showed that somatosensory and visuospatial

working memory tasks engage largely overlapping higher

cortical areas during the delay period. It is likely that, at a neural

level, these networks may overlap only partially. To simulate

these mixed inhibitory and excitatory effects of attention and

identify the degree to which different types of working memory

engage the same neurons, futuremodels will require more neural

populations per area, perhaps with structured connectivity, such

as a ring (Ardid et al., 2007). Local circuit modeling has shown

previously that a circuit designed for working memory is suitable

for decision-making (Wang 2002). Our model may also be suit-

able for considering decision processes distributed across

cortical areas.

Prefrontal and parietal contributions to distributed
working memory
It is increasingly feasible to uncover the circuit mechanisms un-

derlying distributed cognitive functions because of advances in

recording technology (Jun et al., 2017) and large-scale cortical

models (Cabral et al., 2011; Chaudhuri et al., 2015; Honey

et al., 2007; Joglekar et al., 2018; Mejias et al., 2016; Mejias

and Wang, 2021; Schmidt et al., 2018; Shine et al., 2018). Most

previous large-scale cortical models have focused on replicating

resting-state functional connectivity (Cabral et al., 2011; Chaud-

huri et al., 2015; Honey et al., 2007) or propagation of neural ac-

tivity along the hierarchy (Chaudhuri et al., 2015; Joglekar et al.,

2018; Schmidt et al., 2018), with the notable exception of one

recent model that simulated distributed working memory in a

network of 30 cortical areas (Mejias andWang, 2021). Compared

with previous efforts, our model additionally includes (1) a D1 re-

ceptor gradient; (2) multiple inhibitory cell types and distinct py-

ramidal cell compartments; (3) at least 33% more cortical areas

connected via quantitative graded and directed connectivity

data, and, for some figures, (4) short-term synaptic plasticity;

and (5) a VTA module with reinforcement learning mechanisms.

The large-scale nature of the model enabled us to investigate

the contributions of different brain regions to distributed working

memory activity.

Some experimental studies have aimed to dissociate the

contribution of the prefrontal and parietal cortex to working

memory via temporary inactivations. For example, Chafee and

Goldman-Rakic (2000) examined the effects of reversibly cooling

the prefrontal or parietal cortex on activity in the other area and

behavior during a visuospatial working memory task without a

distractor. Cooling affected the FEF (area 8) and nearby prefron-

tal cortex, including the principal sulcus (areas 46 and 9). Cooling

of the parietal cortex included LIP as well as parts of areas DP

(dorsal prelunate gyrus), 7A, and 5. Cooling the parietal cortex

led to a substantial reduction in prefrontal firing rates with only

a minor effect on performance. Cooling the prefrontal cortex

led to a substantial reduction in parietal firing rates and a large

increase in behavioral errors (Chafee and Goldman-Rakic

2000). This is consistent with our simulation results showing

that prefrontal and parietal inactivation can have a robust effect

on reducing mnemonic delay activity but that prefrontal inactiva-

tion has much larger effects on performance (Figures 3E and 3F).

Suzuki and Gottlieb (2013) inactivated areas LIP and dorsolat-

eral prefrontal cortex (dlPFC) using the GABA-A receptor agonist
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muscimol and assessed performance on a similar visuospatial

workingmemory taskwith andwithout distractor stimuli. In these

experiments, neither LIP nor dlPFC inactivation caused errors in

trials without distractors (Suzuki and Gottlieb, 2013). However,

inactivation of dlPFC, but not LIP, led to a dramatic increase in

errors on trials with distractors (Suzuki and Gottlieb, 2013).

This is consistent with our simulation results showing that pre-

cise lesions to dlPFC affect behavior on challenging working

memory trials with distractor stimuli, but larger lesions are

required to disrupt performance in simple working memory trials

without distractors, and lesions to LIP have only subtle effects on

performance. This agrees with recent models of distributed

working memory that suggest that the prefrontal cortex may

have a particularly important role in maintaining distributed

persistent activity (Mejias and Wang, 2021; Murray et al.,

2017). The effects of lesions on model performance are consis-

tent with recent reports showing that there is a distinction be-

tween areas that are active during normal behavior and those

that are essential for a computation (Pinto et al., 2019; Zatka-

Haas et al., 2021) and that cortical lesions have greater effects

on performance in more challenging tasks (Pinto et al., 2019).

Lesions to areas with a high D1 receptor density disrupt
working memory
Working memory activity was most disrupted by lesions to areas

with a high D1 receptor density, a prediction that can be tested

experimentally. Humans with traumatic brain injury often have

working memory deficits (Dunning et al., 2016). Pharmacological

treatment of these deficits, including with dopaminergic drugs,

has had mixed success (Froudist-Walsh et al., 2017b). Our

model simulations suggest that D1 agonists or antagonists could

be effective at restoring normal working memory functioning

following lesions to particular cortical areas, but the correct

treatment may depend on the baseline cortical dopamine levels

of the individual. Dopaminergic drugs have also been suggested

as treatments for individuals with schizophrenia with working

memory deficits (Yang and Chen 2005). In individuals with

schizophrenia, PV and SST gene expression is reduced across

multiple areas of the cortical working memory network (Tsubo-

moto et al., 2019). Disruption of these inhibitory neurons is likely

to contribute to working memory deficits. Future adaptations of

ourmodel could allow simulation of workingmemory deficits and

motivate potential treatments for individuals based on their

particular anatomy, gene expression, and patterns of cortical

dopamine release or receptor density (Abi-Dargham et al.,

2002; Slifstein et al., 2015).

A dopamine switch between the activity-silent state and
persistent activity
For very low or high levels of D1 receptor stimulation, it was

possible to maintain stimulus information in the absence of

persistent activity via synaptic mechanisms. This pattern of suc-

cessful memory recall without frontoparietal delay period activity

is reminiscent of a passive short-term memory trace thought to

rely on ‘‘activity-silent’’ synaptic mechanisms (Rose et al.,

2016; Tr€ubutschek et al., 2017; Wolff et al., 2017) that could

occur without ignition of the frontoparietal cortex (Tr€ubutschek

et al., 2017, 2019). Previous models with short-term synaptic
plasticity have focused on local activity in the prefrontal cortex

(Mongillo et al., 2008) and, thus, implicitly imply that the initial

stimulus must significantly engage prefrontal neural activity

and store the memory trace via short-term plasticity in local pre-

frontal connections. However, some stimuli may be remembered

without a strong initial prefrontal response. We found that short-

term synaptic plasticity in inter-areal connections from sensory

to frontoparietal areas wasmost important for maintaining the si-

lent memory trace. In particular, this is a potential mechanism for

activity-silent short-term memory in the absence of a strong

initial prefrontal response to the stimulus. It has been proposed

that nonspecific excitatory or inhibitory currents could account

for switches between active and silent states (Barbosa et al.,

2020). Ourmodel suggests that dopamine could, in fact, account

for the switch from the silent to the active state. Indeed, because

of the inverted U relationship between dopamine and persistent

firing, a dopamine response to the reward at the end of a trial

could also terminate persistent activity. Another recent proposal

suggests that activity-silent short-term memory could be under-

taken via hippocampal-prefrontal episodic memory mecha-

nisms, perhaps in combination with short-term synaptic changes

in the cortex (Beukers et al., 2021). Future studies should aim to

disentangle the contributions of rapid synaptic changes within

the prefrontal cortex (Mongillo et al., 2008), at inter-areal connec-

tions from sensory areas (this paper), or in the hippocampus

(Beukers et al., 2021) to activity-silent short-term memory in

the primate. We found that, in the activity-silent state, the most

recently encoded stimulus was always encoded most strongly,

even when it was a distractor. This may reflect involuntary en-

coding of irrelevant stimuli in a short-term synapticmemory trace

(Barbosa et al., 2021, 2020). This prediction should hold as the

number of distractors is increased. The activity-silent system

may still be able to recall earlier stimuli for a limited time when

another input biases the network toward the activity pattern

used during encoding of the earlier stimulus to trigger pattern

completion and recall of the memory (Manohar et al., 2019) or

through active forgetting of the distracting stimuli (Wolff et al.,

2021). Alternatively, multiple competingmemoriesmay be repre-

sented in neural activity (Barbosa et al., 2021; Panichello and

Buschman, 2021), which would rely on an unspecified selection

mechanism and may occur in parallel with short-term synaptic

changes. In our model, stimuli stored in persistent activity (and

thus dependent on mid-level dopamine release) were more

robust against distraction, consistent with drug studies in hu-

mans (Fallon et al., 2017a, 2017b). Thus, dopamine release

may engage distributed persistent activity to protect memories

of important stimuli from distraction.

Dopamine increases distractor resistance by shifting
the subcellular target of inhibition
The resilience of the active working memory state in the model

depended on CB/SST cells blocking distracting inputs from

sensory areas to the dendrites of pyramidal cells in the frontal

and parietal cortex. Previous modeling work on local cortical

circuits has suggested that greater dendritic and less somatic

inhibition could increase distractor resistance (Wang et al.,

2004a) and that selective disinhibition of the dendrite (through

CR/VIP cells) could allow specific information to be passed
Neuron 109, 3500–3520, November 3, 2021 3513
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through the network (Yang et al., 2016). In our large-scale

model, CR/VIP cells selectively disinhibited the dendrites of

target-selective cells, allowing target-related activity to flow

through the cortical network. D1 receptors in the monkey cortex

are more strongly expressed on CB/SST neurons than other

interneuron types (Mueller et al., 2020). In agreement with these

anatomical findings, application of dopamine to a frontal cortex

slice increases inhibition to the dendrites and decreases inhibi-

tion to the somata of pyramidal cells (Gao et al., 2003). We

found that, as long as local cortical areas (or potentially cor-

tico-subcortical loops) are capable of maintaining persistent ac-

tivity, then shifting the balance of inhibition from the soma to the

dendrite can allow maintenance of an active representation of a

stimulus in persistent activity while shielding it from distracting

input from sensory areas. The ability of cortical areas to main-

tain persistent activity itself depends on dopaminergic

enhancement of NMDA-dependent excitation. In mice, inhibi-

tion of SST neurons in medial prefrontal cortex during the sam-

ple period of a spatial working memory task impairs perfor-

mance and increases representation of irrelevant information

in prefrontal activity (Abbas et al., 2018). Consistent with our

model, this suggests that SST neurons gate entry of information

into working memory and that inhibition of SST neurons in fron-

toparietal areas allows distracting information to enter.

Learning to engage distributed persistent activity
through reinforcement
Distractor resistance in response to all stimuli could render the

working memory system inflexible and unresponsive to new,

potentially important inputs. Previous studies have shown that

lesioning the prefrontal cortex impairs the ability to switch atten-

tion between stimuli across trials (Rossi et al., 2007). Our model

predicts that the prefrontal cortex is more crucial for persistent

activity than activity-silent short-term memory, which can rely

on short-term synaptic changes outside of the prefrontal cortex.

We show that, by using a simple reward-based learning mecha-

nism, a cortical VTA model (cf. Braver and Cohen, 2000; Frank

2005) can successfully perform a task with reversals between

thememory cue and distractor stimuli across trials. In our model,

the timing of dopamine release in the cortex can be learned to

engage distributed persistent activity throughout the frontopar-

ietal network only in response to reward-predicting cues. Dopa-

mine neurons burst about 130–150 ms after reward-predicting

stimuli, coinciding with a rise in activity in frontal cortical neurons

(de Lafuente and Romo, 2012). Because of the slow dynamics of

cortical dopamine (Muller et al., 2014), we suggest that a tran-

sient increase in dopamine release in response to the target

stimulus (Choi et al., 2020; Schultz et al., 1993) may be sufficient

to maintain distributed persistent activity for several seconds.

This mechanismmay thus be reserved for behaviorally important

stimuli that must be protected from distraction even when the

behaviorally relevant stimuli change from trial to trial. In contrast,

irrelevant or less salient stimuli result in lower dopamine release

andmay be remembered via silent mechanisms or forgotten. We

investigated model performance on a reversal learning task with

identical repeated trials within a block. In natural life, no two sit-

uations are exactly the same. It is likely that the brain generalizes

across similar situations to enable reinforcement learning to be
3514 Neuron 109, 3500–3520, November 3, 2021
used in practice. This ability to generalize may arise from dopa-

mine-dependent plasticity in the prefrontal cortex (Wang et al.,

2018). The classic reward-prediction-error hypothesis treats

dopamine as a global scalar reward prediction error signal that

is spatiotemporally uniform (Schultz 1998). Here we aim to high-

light one form of spatial heterogeneity and suggest that broad

dopamine release will affect each cortical area according to

the D1 receptor density per neuron. Recent work suggests that

there is temporal heterogeneity in dopamine release, which is

released in waves in the mouse striatum (Hamid et al., 2021).

Whether such dopamine waves also occur in the cortex or in pri-

mates remains to be seen. Even if dopamine is released in waves

across the cortex, its effect on cortical areas will be dependent

on the D1 receptor gradient presented here.

Roles of other neuromodulatory and subcortical
systems
In addition to dopamine, other neuromodulators, such as acetyl-

choline (Croxson et al., 2011; Sun et al., 2017; Yang et al., 2013)

and noradrenaline (Arnsten et al., 2012), affect prefrontal delay

period firing and performance on visuospatial working memory

tasks. Cholinergic mechanisms may complement dopaminergic

mechanisms.For example, nicotinic alpha-7 receptorsdepolarize

pyramidal cells, which enables NMDA receptors to be engaged

via removal of the magnesium block (Yang et al., 2013). This

maycompensate for a reduction in presynaptic glutamate release

in response to D1 stimulation and enable dopamine’s permissive

effects onNMDA transmission (Seamans et al., 2001).Muscarinic

M1 receptor activation closes KCNQ channels, which contribute

to the hyperpolarizing effect of high levels of D1 stimulation (Arns-

ten et al., 2012; Galvin et al., 2020). Thus M1 stimulation may

enable persistent activity over a larger rangeof dopamine release.

The effects of noradrenaline on working memory circuits depend

on the targeted adrenergic receptors. Moderate release of

noradrenaline engages adrenergic a2A receptors, which may

counteract the hyperpolarizing effects of hyperpolarization-acti-

vated cyclic nucleotide-gated (HCN) channels (Arnsten, 2000;

Arnsten et al., 2012; Li and Mei, 1994; Robbins and Arnsten,

2009) andkeep theD1effects in checkbydecreasingcalcium-cy-

clic AMP (cAMP) signaling. Greater noradrenergic levels engage

a1 and b1 receptors, which promote calcium-cAMP signaling

and, at high levels, provide negative feedback via KCNQ and

HCN channels (Arnsten et al., 2020). Studies linking neuromodu-

lators to working memory have focused on the dorsolateral pre-

frontal cortex. Much less is known about the influence of these

and other neuromodulators on the distributed network activity

that underlies working memory outside of the prefrontal cortex.

Future work should focus on the interaction of distinct neuromo-

dulators and how release of different combinations of neuromo-

dulators may affect distributed activity patterns and behavior,

taking into account the different distributions of these receptors

across the cortex (Froudist-Walsh et al., 2021). Subcortical struc-

tures, such as the thalamus,may play a significant role in working

memory (Fuster and Alexander, 1971; Guo et al., 2017; Jaramillo,

et al., 2019;Watanabe and Funahashi, 2012). Future experiments

and computational modeling studies should aim to disentangle

the contribution of the thalamus to sensory working memory

and motor preparation (Guo et al., 2017; Watanabe and
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Funahashi, 2012) and clarify the degree to which such mecha-

nisms are shared across species. When appropriate weighted

and directed connectivity data become available, future large-

scale cortical models should also integrate further structures,

such as the thalamus (Jaramillo et al., 2019), basal ganglia (Wei

and Wang, 2016), the claustrum, and the cerebellum to identify

their contributions to working memory.

Conclusion
We experimentally found a macroscopic gradient of dopamine

D1 receptor density along the cortical hierarchy. By building a

novel connectome-based biophysical model of the monkey cor-

tex, endowedwithmultiple types of inhibitory cells, we showhow

dopamine can engage robust distributed persistent activity

mechanisms across connected higher cortical areas and protect

memories of salient stimuli from distraction. Because distributed

persistent activity is necessary for internal manipulation of infor-

mation inworkingmemory (Masse et al., 2019; Takeda and Funa-

hashi, 2004; Tr€ubutschek et al., 2019), dopamine release in the

cortex may be a key step toward higher cognition and thought.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

D1R/neuron data This paper BALSA:

40 area connectivity data This paper CORE-NETS:

Cortical representation of anatomical data This paper BALSA: https://balsa.wustl.edu/study/7qKNZ

Spine count data Guy Elston (Elston, 2007) https://doi.org/10.1016/B0-12-370878-8/

00164-6

Neuron density data Jon Kaas (Collins et al., 2010) https://doi.org/10.1073/pnas.1010356107

Experimental models: Organisms/strains

Cynomolgus macaque (Macaca fascicularis) Labcorp (Covance) https://drugdevelopment.labcorp.com/

Cynomolgus macaque (Macaca fascicularis) Noveprim group, Ebene, Mauritius

Camarney SL-Noveprim Europe,

Camarles-Tarragona, Spain

http://www.noveprimgroup.com/

Rhesus macaque (Macaca mulatta) Silabe, Centre de Primatologie Université

Louis Pasteur, Strasbourg, France; Station

de Primatologie de Rousset, Rousset-sur

Arc, France

https://primatologie.unistra.fr/;

http://www.celphedia.eu/en/centers/

primatologie-rousset

Software and algorithms

Large-scale dynamical model simulation

and analysis software

This paper Zenodo: https://doi.org/10.5281/zenodo.5507279

Python programming language Python RRID: SCR_008394

MATLAB 2019a Mathworks RRID: SCR_001622

BrainSMASH statistical testing of spatially

autocorrelated brain maps

Burt et al. (2020) https://github.com/murraylab/brainsmash

MATLAB Gifti toolbox Guillaume Flandin https://github.com/gllmflndn/gifti
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Xiao-Jing Wang

(xjwang@nyu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Dopamine D1 receptor per neuron and tract-tracing connectivity data have been deposited at at BALSA: 7qKNZ and core-nets and

are publicly available as of the date of publication. Accession numbers are listed in the Key resources table.

All original code has been deposited at GitHub: seanfw/dopamine-dist-wm and Zenodo: https://doi.org/10.5281/zenodo.5507279

and is publicly available as of the date of publication. DOIs are listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in-vitro receptor autoradiography we analyzed the brains of three adult male Macaca fascicularis specimens (between 6 and 8

years old; body weight between 5.2 and 6.6 kg) obtained from Covance (now Labcorp Drug Development), M€unster, where they

were used as control animals for pharmaceutical studies performed in compliance with legal requirements. All experimental proto-

cols were in accordance with the guidelines of the European laws for the care and use of animals for scientific purposes.
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Tract tracing data was obtained from fluorescent retrograde injections of fast blue (FsB) and diamidino yellow (DY) in 29 areas re-

ported in Markov et al., 2014b supplemented by injections in an additional 11 areas with either FsB (areas 9, OPRO), DY (areas LIP,

V6, 25, 32) or cholera toxin subunit B (CTB) (areas 1, 3, 45A, F4, F3). Animals were aged 10-15 years, female andM. fasicularis except

for the LIP injection which wasM. mulatta. The LIP injection was reported in Mejias et al. (2016). Animals were group housed in cages

in with access to plastic toys and other enrichment devices. Housing and surgical intervention were in accordance with European

procedures and were reviewed by the veterinary and ethical services.

METHOD DETAILS

Overview of anatomical data
In this study, we combine post-mortem anatomical data on receptor densities, white matter connectivity, neuron densities and

dendritic spine counts. Each of these four anatomical measures was originally quantified using different parcellations of cortex.

Large sections of the temporal lobe are not yet quantified for either the receptor autoradiography data, or the tract-tracing con-

nectivity data. Collection of this data is underway and will be made available in future studies. With the exception of the receptor

densities in the posterior parietal cortex (Impieri et al., 2019; Niu et al., 2020, 2021), all D1 receptor densities are reported for the

first time in this study. The connectivity data for ten of the 40 cortical areas is used here for the first time, but will be described in

more detail in an upcoming publication from the Kennedy lab. This enabled us to expand the calculation of the cortical hierarchy to

40 regions.

A note on notation
Subscripts in square brackets, such as ½k� are used to denote cortical areas themselves. Subscripts not in brackets, such as i are used

to denote populations of neurons within a cortical area. Superscripts are used to provide further clarifying information. We use the

convention that targets are listed before sources, so that gi;j would denote the strength of a connection from neural population j to

neural population i. Parameter values are listed in Table S6.

Quantification of receptor density across cortex - in-vitro autoradiography
In order to create a high-resolution, and high-fidelity map of cortical dopamine receptor architecture, we used quantitative in-vitro

receptor autoradiography (Palomero-Gallagher and Zilles, 2018). Previous dopamine receptor autoradiography has focused on rela-

tively small sections of cortex (Goldman-Rakic et al., 1990; Impieri et al., 2019; Lidow et al., 1991; Niu et al., 2020; Richfield et al.,

1989). To create a more comprehensive map of the cortical dopamine receptors, we measured D1 receptor density across 109

cortical areas, and D1 and D2 receptors in the basal ganglia.

Animals were sacrificed by means of an intravenous lethal dose of sodium pentobarbital. Brains were removed immediately

from the skull, and brain stem and cerebellum were dissected off in close proximity to the cerebral peduncles. Hemispheres

were separated and then cut into a rostral and a caudal block by a cut in the coronal plane of sectioning between the central

and arcuate sulci. These blocks were frozen in isopentane at �40C to �50C, and then stored in airtight plastic bags at �70C.

Each block was serially sectioned in the coronal plane (section thickness 20 mm) using a cryostat microtome (CM 3050, Leica,

Germany). Sections were thaw-mounted on gelatine-coated slides, freeze-dried overnight and processed for visualization of

D1 or D2 receptors, cell bodies (Merker, 1983) or myelin (Gallyas, 1979).Quantitative in-vitro receptor autoradiography was applied

to label dopaminergic D1 and D2 receptors according to previously published protocols (Palomero-Gallagher and Zilles, 2018)

(Zilles et al., 2002) encompassing a preincubation, a main incubation and a final rinsing step. For visualization of the D1 receptor,

sections were first rehydrated and endogenous substances removed during a 20 minute preincubation at room temperature in a

50 mM Tris-HCl buffer (pH 7.4) containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl2 and 1 mM MgCl2. During the main incubation,

sections were incubated with either 0.5 nM [3H]SCH 23390 alone (to determine total binding), or with 0.5 nM [3H]SCH 23390 and

1 mM of the displacer mianserin (to determine the proportion of displaceable, non-specific binding) for 90 minutes at room tem-

perature in the same buffer as used for the preincubation. Finally, the rinsing procedure consisted of two 20 minutes washing

steps in cold buffer followed by a short dip in distilled water. For visualization of the D2 receptor, sections were preincubated

with 50 mM Tris-HCl buffer (pH 7.4) containing 150 mM NaCl and 1% ascorbate. In the main incubation, sections were incubated

with either 0.3 nM [3H]raclopride alone, or with 0.3 nM [3H]raclopride and 1 mM of the displacer 1 mM butaclamol for 45 minutes at

room temperature in the same buffer as used for the preincubation. Rinsing consisted of six 1 minute washing steps in cold buffer

followed by a short dip in distilled water. Specific binding is the difference between total and non-specific binding. Since the li-

gands and binding protocols used resulted in a displaceable binding, which was less than 5% of the total binding, total binding

is considered to be equivalent of specific binding. Sections were dried in a cold stream of air, exposed together with plastic scales

of known radioactivity against tritium-sensitive films (Hyperfilm, Amersham) for six (for the D1 receptor) or eight (for the D2 recep-

tor) weeks, and ensuing autoradiographs processed by densitometry with a video-based image analyzing technique (Palomero-

Gallagher and Zilles, 2018)(Zilles et al., 2002). Autoradiographs were digitized using a CCD-camera, and stored as 8-bit gray value

images with a spatial resolution of 2080x1542 pixels. Grey values (g) in the co-exposed scales as well as experimental conditions

were used to create a regression curve with which gray values in each pixel of an autoradiograph were transformed into binding

site densities (Bmax) in fmol/mg protein by means of the formula
e2 Neuron 109, 3500–3520.e1–e13, November 3, 2021
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Bmax =
gR

EBWbsa
$
KD + L

L
(Equation 1)

whereR is the radioactivity concentration (cpm) in a scale, E the efficiency of the scintillation counter used to determine the amount of

radioactivity in the incubation buffer,B the number of decays per unit of time and radioactivity,Wb the protein weight of a standard, sa

the specific activity of the ligand, KD the dissociation constant of the ligand, and L the free concentration of the ligand during incu-

bation. For visualization purposes solely, autoradiographs were subsequently pseudo-color coded by linear contrast enhancement

and assignment of equally spaced density ranges to a spectral arrangement of eleven colors.

Cortical areas were identified by cytoarchitectonic analysis and receptor densities measured at comparable sites in the adjacent

sections processed for receptor visualization. The mean receptor density for each area over a series of 3–5 sections per animal and

receptor was determined by density profiles extracted vertical to the cortical surface using MATLAB-based in house software (Pal-

omero-Gallagher and Zilles, 2018).

Retrograde tract-tracing
The inter-areal connectivity data in this paper is part of an ongoing effort to map the cortical connectome of the macaque using retro-

grade tract-tracing (Markov et al., 2013, 2014a, 2014b). For each target area, a retrograde tracer was injected into the cortex. The

tracer was taken up in the axon terminals in this area, and retrogradely transported to the cell bodies of neurons that projected to

the target. These cell bodies could be throughout the brain. Each of these cell bodies in cortex was counted as a labeled neuron

(LN). The amount of labeled neurons was counted in all cortical areas except for the injected target area. The cortical areas that

send axons to the target area are called source areas. As there are uncontrollable differences in tracer volume and uptake between

injections, we estimated the strength of connections as follows. For a given injection, the total number of cell bodies in the cortex

outside of the injected (target) area was counted. The number of labeled neurons within a source cortical area was then divided

by the number of labeled neurons in the whole cortex (excluding the target area), to give a fraction of labeled neurons (FLN). The

FLNwas averaged across all injections in a given target area. For this calculation, we include all areas in the entire cortical hemisphere

ðnareas = 91Þ.

FLN½k;l� =
LN½k;l�Pnareas

l = 1 LN½k;l�
(Equation 2)

In addition, for each connection we defined the supragranular labeled neurons (SLN) as the fraction of neurons in the source area

whose cell bodies were in the superficial (aka supragranular) layers.

SLN½k;l� =
LNsupra

½k;l�
LNsupra

½k;l� + LNinfra
½k;l�

(Equation 3)

The subiculum (SUB) and piriform cortex (PIR) have a qualitatively different laminar structure to the neocortical areas, and thus supra-

and infra-laminar connections (and thus the SLN) from these areas are undefined. We thus removed all connections from these areas

from the following calculations ðnareas;SLN = 89Þ. These connectivity data are available on the core-nets website.

Estimation of the cortical hierarchy
Following (Markov et al., 2014a), we estimate the hierarchical position h of each area using the SLN values of its connections. Feed-

forward connections tend to originate in the supragranular layers, while feedback connections tend to originate in the deep layers of

the source area (Barone et al., 2000; Felleman and Van Essen, 1991). Moreover, if a target area occupies a much higher hierarchical

position than the source area, a greater proportion of the neurons emerge from the supragranular layers of the source area than if the

two areas are closer in the hierarchy (Barone et al., 2000). Likewise for the feedback connections, a greater hierarchical distance be-

tween the areas implies that the higher area sends a greater proportion of it projections from the infragranular layers. This implies that

the fraction of neurons coming from the supragranular layers in a given connection gives an estimate of the relative hierarchical po-

sition of two connected areas (Barone et al., 2000; Markov et al., 2014a). Here, following (Markov et al., 2014a), we estimate a set of

hierarchical levels (one per area) that best predicts the SLN values for all connections in the dataset.

The model to estimate the hierarchy has the form

gðEðSLNÞÞ = Xb (Equation 4)

where g is a function that links the SLN of the connection between areas to the hierarchical distance between them. b is a column

vector of length nareas;SLN, containing the hierarchy values to be estimated. X is an incidence matrix of shape nconns3nareas;SLN, where

nconns ( = 2619) is the number of observed (non-zero) connections between cortical areas in the remaining dataset. Each row in X

represents a connection, and each column represents a cortical area. All entries in each row equal 0 except for the column corre-

sponding to the source area, which has a value of �1, and the target (recipient) area, which has a value of 1 (Strang, 1993).

The hierarchical values can be estimated with maximum likelihood regression. However, the model is singular (the rows sum

to zero). In order to make the model identifiable, we therefore removed one column from X. We chose to remove the column
Neuron 109, 3500–3520.e1–e13, November 3, 2021 e3
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corresponding to area V1, which is therefore forced to have a hierarchical value of 0. However, the choice of column is unimportant,

as it is possible to estimate negative hierarchical values (in the case that other areas are lower than V1 in the hierarchy).

We used the beta-binomial model. The binomial parameter p corresponds to the proportion of successes. This is thought to be a

random variable following a Beta distribution. The beta-binomial distribution depends on two parameters, themean (m, here the SLN),

and the dispersion (f). The beta-binomial model can account for the overdispersion of the neural count data. Note that the SLN of

each measured connection is input into the model, without averaging across repeated injections.

The likelihood is written as

fðm;f;q;nÞ =
 
n
q

!B

�
m

�
1�f

f

�
+q; ð1� mÞ

�
1�f

f

�
+ n� q

�

B

�
m

�
1�f

f

�
; ð1� mÞ

�
1�f

f

�� (Equation 5)

where q is the number of neurons projecting from the supragranular layers, n is the number of neurons projecting from all layers, and B

is the beta function defined as

Bðx; yÞ =
Z 1

0

px�1ð1� pÞy�1dp (Equation 6)

with x;y > 0. We fit the model using m = FðXbÞ, where F is the cumulative Gaussian, as it maps the real numbers to the (0,1) range.

F�1 =g in Equation 4 is the probit link function. The hierarchy is estimated byminimizing the log-likelihood. For more details seeMar-

kov et al. (2014a).

We then rescaled the hierarchy so that the maximum hierarchial value within the 40 region complete subgraph (containing all in-

jected areas) equaled 1:

h½k� =
b½k�

max
�
bsubgraph

� (Equation 7)

for all cortical areas k in the complete 40-area subgraph.

For the circular embedding of the connectivity data, we estimate angles qi;j between areas Ai and Aj so that a smaller angular dis-

tance between areas corresponds to a higher connectivity strength (Chaudhuri et al., 2015). The dissimilarity dðAi;AjÞ is defined as

dðAi;AjÞ =
(
�log10ðFLNðAi;AjÞÞ for FLNðAi;AjÞR0
�log10ðFLNminÞ for FLNðAi;AjÞ= 0

where FLNmin = 10�7, a value smaller than any FLN in the dataset.

The angles qi are assigned to each area such that

dðAi;AjÞzminð��qi � qj
��;2p� ��qi � qj

��Þ
The estimated angles qi are constrained to lie within the range ½0; 1� and then mapped onto ½0; 2p�.

The radial distance from the center of the circle is ri =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p
, where hi is the hierarchical value of the area, as defined above.

Integration of anatomical datasets
All anatomical data wasmapped to the appropriate parcellations on the Yerkes19 surface. For the present study, wemapped all data

to the 40 area Lyon subgraph (Markov et al., 2014b), as the areas in this parcellation were generally larger than those in the Julich

Macaque Brain Atlas (Impieri et al., 2019; Niu et al., 2020; Rapan et al., 2021; this paper) and the Queensland (spine count) injection

sites (Elston, 2007), and closer to standard areal descriptions than the Vanderbilt (neuronal density) (Collins et al., 2010) sections.

The receptor densities were quantified in 109 cortical regions defined by cyto- and receptor-architecture. Themethod for the delin-

eation of cortical region borders is described in (Impieri et al., 2019; Niu et al., 2020; Rapan et al., 2021). Using the same method,

anatomists (NPG, MN, LR) identified cortical areas on the basis of the receptor and cyto-architecture. See Figure 1 for the definition

of the areas. Anatomists carefully drew (NPG, MN, LR) and independently revised (NPG, MN, LR, SFW) defined borders on the

Yerkes19 cortical surface (Donahue et al., 2016) to enable comparison with other data types. The D1 receptor data was mapped

to the Lyon atlas as follows. For each area in the Lyon atlas, we searched for overlaps with areas in the Julich Macaque Brain Atlas.

If more than 50% of the vertices within the area were also in the Julich Macaque Brain Atlas, the D1 receptor density for the area was

calculated. All vertices within each Julich area were assigned the mean value for that area. We averaged the D1 receptor density

across all vertices that lay within both the Lyon area and the Julich Macaque Brain Atlas, thus performing a weighted average of

the D1 receptor densities according to the degree of spatial overlap. Thirty-two of the 40 Lyon areas were assigned D1 receptor den-

sity in this way, with the remaining eight areas not overlapping sufficiently with the Julich Macaque Brain Atlas. Due to the strong

positive correlation between the D1 receptor/neuron density and the hierarchy (Figure 1), for the simulations we inferred values

for the remaining eight regions using linear regression with hierarchy as the independent variable and D1 receptor/neuron density

as the dependent variable.
e4 Neuron 109, 3500–3520.e1–e13, November 3, 2021
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The in-vitro autoradiography data accurately quantifies the density of receptors across cortex. However, it is important to bear in

mind that the density of neurons also varies across the cortex. Collins et al. (2010) measured the density of neurons across the entire

macaque cortex using the isotropic fractionator (a.k.a. brain soup) method. In the original paper, the cortex was divided into 42 re-

gions and displayed on a flatmap, with anatomical landmarks labeled (Figures 2 and S1 of that paper). The borders of these regions

were drawn on the Yerkes19 surface by SFWwith reference to the original paper (Collins et al., 2010), several anatomical papers from

the same group (Beck and Kaas, 1999; Cerkevich, et al., 2014; Kaas, 2004), the Julich Macaque (109 areas) and the Lyon (Markov-

132) atlases (Donahue et al., 2016;Markov et al., 2014b), andwere independently assessed by anatomists (LR,MN, NPG). The neural

density data covered the entire cortex. As such, we assigned neural density to each area in the Lyon atlas, weighted by the spatial

overlapwith the original regions in the Vanderbilt atlas. D1 receptor density was divided by the neuron density to give theD1 receptor/

neuron density in each area. The neuron density was in units of neurons per gram. To estimate the receptor density in fmol per neuron,

we used the previously reported figure that 8% of brain tissue is protein (McIlwain and Bachelard, 1972). This amounts to multiplying

by a constant, and does not affect the correlations or the effect of the dopamine gradient in the model.

The Lyon atlas used to define the interareal connectivity data (Markov et al., 2014b) is already available on the Yerkes19 surface

(Donahue et al., 2016). The complete subgraph of injected areas including bidirectional connectivity has been expanded from 29

areas in Donahue et al. (2016) to the 40 areas used in this paper.

For the spine count data, outlines of the 27 injection sites were drawn on the Yerkes19 surface by SFWwith reference to the original

papers (most of which had substantial anatomical description and hand-drawn maps), as well as anatomical papers cited within the

original papers (Cavada and Goldman-Rakic, 1989; Preuss and Goldman-Rakic, 1991; Seltzer and Pandya, 1978) and the Lyon and

Julich Macaque Brain Atlases. Direct comparison with the hand-drawn maps was possible for areas V1, V2, MT, LIPv, 7a, V4, TEO,

STP, IT, Ant. Cing., Post. Cing, TEpd, 12vl, A1, 3b, 4, 5, 6, 7b, 9, 13, 46, 7 m (Elston, 2007). Areas 10, 11 and 12 were described with

reference to Preuss and Goldman-Rakic (1991). The injection in area TEa used the maps in Seltzer and Pandya (1978) for area defi-

nition. We used these maps to approximate the injection location. Area STP was identified with the corresponding region STPp in the

atlas of Felleman and Van Essen (1991). Area FEF was identified as lying on the anterior bank of the medial aspect of the arcuate

sulcus, as described by Elston (2007). All identified injection sites on the cortical surface were independently verified by MN, LR

and NPG. Spine count data was expressed according to injection sites, rather than entire cortical areas. As such, we found the num-

ber of vertices from each injection site overlapping with each area in the Lyon atlas. For each Lyon area, the spine count was an

average of the spine counts for all the injection sites overlapping with the area, weighted by the number of vertices of each injection

site contained within the area. In this way we estimated the spine counts on pyramidal cells in 24 of the 40 regions in the Lyon atlas.

Based on the strong positive correlation between spine count and cortical hierarchy (r = 0.61, p = 0.001), and following previous work

(Chaudhuri et al., 2015; Mejias and Wang 2021), we inferred the spine count for the remaining regions based on the hierarchy using

linear regression.

Neuroanatomists (NPG, LR, MN) classified each of the 109 cortical areas for which D1 receptor data is available as being either

granular, or agranular, and according to the ratio of cell body size between layers III and V.

Delineations of the areal borders for each atlas, and the anatomical data in the Yerkes19 space are available on the BALSA

database.

Overview of dynamical models
We first describe the connectivity structure of our local circuit model, and how dopamine modulates the efficacy of these connec-

tions. We then describe a large-scale dynamical model, in which the local circuit is used as a building block, and placed in each of 40

cortical areas. We describe the various steps to building the large-scale model, including how to connect the cortical areas, apply

heterogeneity of excitation and the gradient of dopamine. Lastly, we describe how we simulated working memory tasks, lesions

and transient inhibition in this model.

Description of the local cortical circuit
We describe a local cortical circuit containing populations of four distinct types of neurons. This is conceptually related to previous

computational models of working memory involving multiple types of interneurons (Tanaka, 1999; Wang et al., 2004a), and uses a

mean field reduction of a spiking model (Brunel and Wang, 2001; Wong and Wang, 2006). PV, CB/SST and CR/VIP cells differed

in the threshold and slope of their input-output function (f-I curve) (Bacci et al., 2003), local (Adesnik et al., 2012; Jiang et al.,

2015; Muñoz et al., 2017; Pfeffer et al., 2013; Tremblay et al., 2016) and long-range connectivity (Lee et al., 2013; Wall et al.,

2016), adaptation rates (Kawaguchi, 1993; Mendonça et al., 2016; Schuman et al., 2019), and NMDA/AMPA ratio (Lu et al., 2007).

The connectivity structure and strengths of the local circuit, are based on a synthesis of anatomical and physiological studies, and

are captured in the local connectivity matrixG (Tables S1–S3; Jiang et al., 2015; Kalisman et al., 2005; Lee et al., 2013;Ma et al., 2012;

Markram et al., 1997; Pfeffer et al., 2013; Silberberg and Markram, 2007; Walker et al., 2016). Note that connection probability and

synaptic strength between neural types are generally positive correlated (Jiang et al., 2015). This simplifies the process of identifying

the relative strengths of connections between neural populations in the circuit.

We grouped the pyramidal neurons into two separate populations. Each of these populations is selective to a particular visual

feature (such as a region of visual space). Pyramidal cells excite all cell types in the circuit, with different strengths. We model two

compartments in the pyramidal cells. One compartment represents the soma and proximal dendrites, and the other the distal
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dendrites. The dendrite ismodeled as a simplified nonlinear function, adapted fromYang et al. (2016). Pyramidal cells target the soma

and proximal dendrites of other pyramidal cells in the same cortical area (Kalisman et al., 2005; Markram et al., 1997; Petreanu et al.,

2009). Each type of inhibitory neuron has a unique pattern of connectivity. The first inhibitory cell type targets the perisomatic area of

the pyramidal cells. These cells express parvalbumin (PV) and are fast spiking (Jiang et al., 2015; Kawaguchi, 1993, 1995). They are

basket cells with axons that branch across wide distances, which allows them to inhibit pyramidal cells in neighboring populations

(Helmstaedter et al., 2009; Kawaguchi, 1995). They also inhibit other PV neurons (Jiang et al., 2015; Pfeffer et al., 2013). Compared to

other inhibitory neurons, PV neurons receive a smaller proportion of excitatory inputs via NMDA receptors (Lu et al., 2007; Wang and

Gao, 2009). The second type of inhibitory neuron targets the distal dendrites of excitatory cells. In non-human primates, dendrite-

targeting cells express calbindin (DeFelipe et al., 1989). The best characterized dendrite-targeting cell type in rodents is theMartinotti

cell, which expresses somatostatin (CB/SST) (Wang et al., 2004b). These cells target all other cell types, while avoiding other Marti-

notti cells (Jiang et al., 2015). They also receive a strong lateral projection from pyramidal cells in neighboring columns (Adesnik et al.,

2012) and receive most of their excitation via NMDA receptors (Lu et al., 2007). The third type of interneuron expresses calretinin and

vasoactive intestinal peptide (CR/VIP) (Tremblay et al., 2016) and targets CB/SST inhibitory neurons (Lee et al., 2013). Although gene

expression of PV, SST and VIP have been used to successfully distinguish non-overlapping classes of interneurons in primates

(Hodge et al., 2019; Krienen et al., 2020), in primates SST antibodies often label relatively few cells (Hendry et al., 1984; Mueller

et al., 2018, 2020). SST is often, but not always co-expressed with CB (González-Albo et al., 2001; Lake et al., 2016). CB and

SST expressing cells show a similar pattern of expression across cortical layers and areas in the macaque (Dienel et al., 2020).

CR is expressed in most VIP neurons in primate cortex (Gabbott and Bacon, 1997; Lake et al., 2016), and both VIP and CR show

a similar expression across layers and cortical areas in themacaque (Dienel et al., 2020). However, the investigation of cross-species

interneuron type similarities and differences is ongoing and not resolved (Hodge et al., 2019; Kooijmans et al., 2020; Krienen et al.,

2020). In our model, the three interneuron types should be more appropriately interpreted according to their synaptic targets, rather

than other cellular markers.

See Table S6 for all parameter values.

Dopamine modulation
The density of dopamine D1 receptors per neuron was rescaled, so that the area with minimum density rrawmin was set to zero, and the

area with maximum density rrawmax was set to one, with all other areas lying in between.

r½k� =
rraw½k� � rrawmin

rrawmax � rrawmin

for all cortical areas k.

Network behavior was investigated for differing amounts of cortical dopamine availability ðlDAÞ. The specific value of lDA used for

each simulation is shown in the figures and main text. Note that for Figure 6, lDA is calculated dynamically throughout each trial.

Cortical dopamine availability is related to the fraction of occupied D1 receptors locc through a sigmoid function. The fraction of occu-

pied D1 receptors thus lies between 0 and 1, as expected.

locc =
eboðlDA�coÞ

1+ eboðlDA�coÞ (Equation 8)

Dopamine increases the proportion of inhibition onto the dendrites of pyramidal cells (Gao et al., 2003). Therefore, we simulated the

effect of dopamine on dendritic inhibition as follows. The total amount of dendritic inhibition increases (from aminimum to amaximum

strength) as the total amount of occupied receptors increases. The total amount of occupied receptors is equal to the receptor den-

sity multiplied by the fraction of occupied receptors.

gDA
Edend ;SST ;½k� = gmin

Edend ;SST
+ loccr½k�

�
gmax
Edend ;SST

� gmin
Edend ;SST

	
(Equation 9)

Dopamine decreases the proportion of inhibition onto the soma of pyramidal cells (Gao et al., 2003). Therefore, we simulated the ef-

fect of dopamine on somatic inhibition as follows. The total amount of somatic inhibition decreases (from a maximum to a minimum

strength) as the total amount of occupied receptors increases.

gDA
Esoma ;PV;½k� = gmax

Esoma ;PV
+ loccr½k�

�
gmin
Esoma ;PV

�gmax
Esoma ;PV

	
(Equation 10)

Dopamine also increases the strength of excitatory synaptic transmission via NMDA receptors (Seamans et al., 2001). We modeled

this with a sigmoid function, so that dopamine primarily increases NMDA conductances at low and medium dopamine concentra-

tions, before reaching a plateau (Brunel and Wang, 2001).

n½k� =
ebnðloccr½k��cnÞ

1+ ebnðloccr½k��cnÞ (Equation 11)

Here bn sets the slope of the sigmoid function, cn sets the midpoint.
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The effects of dopamine on NMDA transmission is then defined as

nDA½k� = 1+an½k� (Equation 12)

where a controls the strength of dopamine modulation on NMDA transmission.

High levels of D1 agonism lead to a reduction in pyramidal cell firing, particularly during the delay period of working memory tasks.

D1 receptor stimulation may lead to inhibition of ongoing activity by engaging an intracellular pathway involving cyclic AMP, protein

kinase A and either HCN or KCNQ channels (Arnsten et al., 2019; Gamo et al., 2015; Vijayraghavan et al., 2007). The mechanisms by

which HCN channels may hyperpolarise the cell are still under debate (George et al., 2009; Pereira, 2014). We simulated an increase

in adaptation for very high levels of D1 receptor stimulation with a sigmoid function, so that adaptation increases at high dopamine

concentrations, before reaching a plateau.

mM
½k� =

ebMðloccr½k��cMÞ
1+ ebMðloccr½k��cMÞ (Equation 13)

Description of dynamical variables
The neural populations interact via synapses that contain NMDA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

and gamma-aminobutyric acid (GABA) receptors. Each receptor has its own dynamics, governed by the following equations.

The synaptic variables are updated as follows (Wang 1999; Wong and Wang, 2006; Yang et al., 2016)

dsNMDA

dt
= � sNMDA

tNMDA
+
�
1� sNMDA

�
gNMDArE (Equation 14)
dsAMPA

dt
= � sAMPA

tAMPA
+gAMPArE (Equation 15)
dsGABA

dt
= � sGABA

tGABA
+gIrI (Equation 16)
dsGABA;dend

dt
= � sGABA;dend

tGABA;dend
+gIrI (Equation 17)

where s is the synaptic drive onto a particular receptor type, t is the time constant of decay of that receptor and gNMDA, gAMPA and gI

are constants. rE and rI are the firing rates of the presynaptic excitatory and inhibitory cells targeting the NMDA, AMPA and GABA

receptors, calculated below. Note that the inhibition onto the dendrite is slower than inhibition elsewhere ðtGABA;dend > tGABAÞ (Ali
and Thomson, 2008). Hence we calculate dynamics of dendritic and somatic inhibition separately.

Adaptation acts to reduce the firing rate when the rate is high and has been frequently modeled in the following simple form (Engel

and Wang, 2011; Hansel and Sompolinsky, 1998; Laing and Chow, 2002; Shpiro et al., 2007; Theodoni et al., 2011), derived from a

spiking model (Liu and Wang, 2001; Theodoni et al., 2011)

da

dt
= � a

ta
+ r (Equation 18)

where a is the adaptation variable, ta is the adaptation time constant, and r is the firing rate of the neural population.

NMDA/AMPA ratio
The fraction of excitatory postsynaptic current that is dependent on NMDA versus AMPA receptors differs by cell type (e.g., with rela-

tively more current via the NMDA receptors in CB/SST versus PV cells) (Lu et al., 2007). Thus, we allowed the strength of excitatory

transmission via NMDA and AMPA receptors to vary by cell type, described in the NMDA fraction, k (Table S6).

Modulation of excitatory connections by dendritic spines
Approximately 90% of excitatory synapses on neocortical pyramidal cells are on dendritic spines (Nimchinsky et al., 2002). On this

basis, we modulate the strength of excitatory connections according to the dendritic spine count.

z½k� =
zraw½k� � zrawmin

zrawmax � zrawmin

for all cortical areas ½k�.
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z½k� = zmin + z½k�
�
1� zmin

�
(Equation 19)

where zmin sets the lower bound for the modulation of excitatory connections by the spine count, z.

Description of local currents
The local NMDA current is calculated as follows

INMDA;local
i;½k� = z½k�kin

DA
½k�

X
jεfE1 ;E2g

gE
i;js

NMDA
j (Equation 20)

where the local excitatory connections via the NMDA receptors are scaled by the NMDA receptor fraction ki, the dendritic spine count

z½k� and the D1 receptor stimulation nDA½k� for all populations of neurons i and cortical areas k.

Similarly local excitatory connections via the AMPA receptors are scaled by the AMPA receptor fraction 1� ki and the dendritic

spine count z½k�.

IAMPA;local
i;½k� = z½k�ð1� kiÞ

X
jεfE1 ;E2g

gE
i;js

AMPA
j (Equation 21)

Local inhibitory connections are not explicitly modulated by the dendritic spine count (as spines are the locations of synapses be-

tween excitatory cortical neurons). Note however, that the connectivity structure gGABA is modulated by the dopamine receptor den-

sity and occupancy (See Tables S2, S3, and S6).

IGABA
i =

X
jεfInhg

gGABA
i;j sGABA

j (Equation 22)

where Inh is the set of inhibitory neuron populations.

The currents onto the dendrites are calculated separately, in order to calculate the nonlinear transformation of the current in the

dendrite. They depend on the noise and background currents, so are described below.

Description of noise and background currents
Noise is modeled as an Ornstein-Uhlenbeck process, separately for each population.

tAMPAdI
noiseðtÞ
dt

= � InoiseðtÞ+ hðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tAMPAs2

noise

q
(Equation 23)

where snoise is the standard deviation of the noise and h is Gaussian white noise with zero mean and unit variance.

A constant background current Ibg was also added to each population (Table S6). This represents input from brain areas that are

not explicitly modeled.

Description of the adaptation current
We include adaptation in excitatory cells (Kawaguchi, 1993), CB/SST (Kawaguchi, 1993, 1995) and CR/VIP cells (Mendonça et al.,

2016; Schuman et al., 2019), but not PV cells (Kawaguchi 1993, 1995). This is reflected in their differing adaptation strengths ga
PV and

ga
other , where ga

PV = 0.

The adaptation current is

Iadapti;½k� =
�
ga
i + gm

i m
M
½k�
�
ai;½k� (Equation 24)

for all local populations i and cortical areas k.

Note that ga
i represents the non-dopamine dependent adaptation, while gm

i m
M
½k� controls the dopamine-dependent adaptation,

which depends on both dopamine release and receptor density (Equation 13).

Large-scale connectivity structure
Each of the cortical areas is connected using connectivity strengths derived from the retrograde tract-tracing data. Parts of this data-

set of been included in previous publications (Markov et al., 2013, 2014a, 2014b). The long-range connectivity matrices are built from

the FLN matrix. However, as noted in Mejias et al. (2016), the FLN matrix spans 5 orders of magnitude. The relationship between

anatomical and physiological connectivity strengths is not clear, but if we were to use the raw FLN values in the large-scale model,

many of the weaker connections would become irrelevant. To deal with this, we rescale the FLN matrix in order to increase the in-

fluence of smaller connections while maintaining the topological structure (Mejias et al., 2016; Mejias and Wang, 2021).

w½k;l� =
FLNb1

½k;l�Pnsub

l = 1FLN
b1
½k;l�

(Equation 25)
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Here we restrict calculations to the injected cortical areas i, j, which allows us to simulate the complete bidirectional connectivity

structure within the subgraph ðnsub = 40Þ. We use the same parameter values as in Mejias et al. (2016) and Mejias and Wang

(2021) (Table S6) to construct our interareal connectivity matrix W .

As noted previously, feedforward projections tend to originate in the supragranular layers, while feedback connections originate in

the deep layers. Feedforward and feedback connections also likely have different cellular targets. Therefore it is useful to separate the

long-distance feedforward and feedback connections.

wsupra
½k;l� = SLN½k;l�w½k;l� (Equation 26)
winfra
½k;l� = ð1�SLN½k;l�Þw½k;l� (Equation 27)

Interareal population interactions
The majority of interareal connections contain a mixture of axons projecting from deep and superficial layers. Long distance con-

nections onto excitatory cells primarily target the distal dendrites (Petreanu et al., 2009; Table S4). Therefore, in the model we

assume that long-distance connections target the dendrites of excitatory cells. CR/VIP cells receive the strongest long-distance

inputs of all inhibitory cells, while CB/SST receives the weakest (Lee et al., 2013; Wall et al., 2016; Tables S5 and S6). This sug-

gests that long-range connections effectively disinhibit the dendrite in the target area by exciting CR/VIP interneurons, while

concurrently exciting the dendrite, to maximize the probability of information passing from the source area into the target

area. Following Mejias and Wang (2021) we assume that feedback connections target inhibitory cells more strongly than feedfor-

ward connections.

Excitatory cells in different cortical areas with the same receptive fields are more likely to be functionally connected (Zandvakili and

Kohn 2015). This is reflected in our model as follows. In the source area, there are two excitatory populations, 1 and 2, each sensitive

to a particular feature of a visual stimulus (such as a location in the visual field). Likewise in the target area, there are two populations 1

and 2, sensitive to the same visual features.We assume that 90%of the output of population 1 in the source area goes to population 1

in the target area, and the remaining 10% to population 2. The converse is true for population 2 in the source area (it targets 10%

population 1, 90% population 2; Tables S4 and S6).

Disinhibitory circuit in the frontal eye fields
The frontal eye fields (areas 8m and 8l in the model), have a very high percentage of calretinin neurons, and relatively fewer parval-

bumin and calbindin neurons (Pouget et al., 2009). To account for this in the model, we relatively increased the long-range inputs to

CR/VIP cells in areas 8m and 8l, as detailed in Table S6. These changes are critical for persistent activity in areas 8l and 8m, but other-

wise do not greatly affect the behavior of themodel.Without this change, the overlap between the simulated delay activity pattern and

the experimental delay activity pattern (as in Figure 3A) is still extremely high (17/19 areas correct, chi-square = 12.31 p = 0.0004), and

the activity pattern depends on both the long-range connectivity (p = 0.001), and D1 receptor distribution (p = 0.008), but not the spine

count (p = 0.19), and lesions to areas 8l and 8mhave a smaller effect on distributed persistent activity. All other results are unchanged.

We also increased the relative strength of local CR/VIP connections and reduced the relative strength of local PV connections in FEF,

but found that this had no effect on model behavior, so the simulations in the paper are presented without the local changes in FEF.

Calculation of long-range currents
Long-range interactions are applied as follows:

INMDA;E;E
i½k� = z½k�m

E;EnDA½k� ki
Xnsub
l = 1

wsupra
½k;l�

X
jεfE1 ;E2g

gE;E
i;j SNMDA

j½l� (Equation 28)

where z½k� is the dendritic spine count for area k (as defined above), mE;E is the long-range connectivity strength onto excitatory cells

(See Table S6), nDA½k� is the degree of dopamine modulation of NMDA currents for area k, ki is the NMDA/AMPA fraction for population i,

w½k;l� is the connection strength from area l to area k, gE;E
i;j sets the long-range strength from population j to population i (Tables S4 and

S6) and SNMDA
j½l� is the synaptic NMDA drive from population j in source area l.

Similarly,

INMDA;I;E
i½k� = z½k�m

I;EnDA½k� ki
Xnsub
l = 1

winfra
½k;l�

X
jεfE1 ;E2g

gI;E
i;j S

NMDA
j½l� (Equation 29)

(Tables S5 and S6).

The total long-range current via the NMDA receptors, is simply the concatenation of the two above terms INMDA;E;E and INMDA;I;E .
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INMDA;LR =
�
INMDA;E;E ; INMDA;I;E

�
(Equation 30)

The long-range AMPA current is calculated similarly,

IAMPA;E;E
i½k� = z½k�m

E;Eð1� kiÞ
Xnsub
l = 1

wsupra
½k;l�

X
jεfE1 ;E2g

gE;E
i;j SAMPA

j½l� (Equation 31)
IAMPA;I;E
i½k� = z½k�m

I;Eð1� kiÞ
Xnsub
l = 1

winfra
½k;l�

X
jεfE1 ;E2g

gI;E
i;j S

AMPA
j½l� (Equation 32)
IAMPA;LR =
�
IAMPA;E;E ; IAMPA;I;E

�
(Equation 33)

Description of dendritic currents
The inhibitory current onto the dendrite comes from CB/SST cells and is modulated by dopamine (Table S2; Equation 9)

Idend;inhi =
X

jεfSST1;SST2g
gGABA;dend
i;j sGABA

j (Equation 34)

The distal dendrites receive long-range input (from neurons in other areas), noise and background input. In addition, if the area re-

ceives a stimulus directly, then the external stimulus also targets the dendrites. Note that most local connections target the area

around the soma (Markram et al., 1997; Petreanu et al., 2009). This is reflected in the model by having local connections exclusively

target the soma compartment of pyramidal cells.

Idend;exci;½k� = INMDA;LR
i;½k� + IAMPA;LR

i;½k� + Istimi;½k� + Inoisei;½k� + Ibackgroundi (Equation 35)

The dendritic nonlinearity is adapted from Yang et al. (2016) and modeled as follows:

Isoma;dend = fI
�
Idend;exc; Idend;inh

�
= c1:



tanh

�
Idend;exc + c3I

dend;inh + c4

c5e
�Idend;inh=c6

��
+ c2 (Equation 36)

where Isoma;dend is the total current passed from the dendrite to the soma, Idend;exc and Idend;inh are the total excitatory and inhibitory

current onto the dendrite, respectively. c1 to c6 control the gain, shift, inversion point and shape of the nonlinear function. These pa-

rameters are set to ensure that strong inhibition to the dendrite effectively blocks dendritic activity, but has little effect on somatic

firing if the soma is directly stimulated (See Table S6; Marlin and Carter, 2014).

Application of external stimuli for tasks
In all simulations, the first stimulus is applied for 400ms. The second stimulus (Figures 3, 4, 5, and 6) is applied 600ms after the

removal of the target stimulus for another 400ms. The two stimuli are of equal strength and duration, although the results are robust

to a range of stimulus strengths (See Table S6 for parameter values). For Figures 2, 3, 4, 5, and 6 in the main text, a stimulus was

applied to the dendrite of excitatory population 1 in area V1. For Figures 3, 4, 5, and 6 a second stimulus was applied to the dendrite

of excitatory population 2 of area V1. For Figures S4 and S5, the stimuli were applied to area 3 of primary somatosensory cortex

instead. In all equations, the target and distractor stimuli are designated by the term Istim.

Total current in large-scale model
The total current equals the sum of all long-range, local and external inputs, and intrinsic currents.

Itotal = INMDA;LR + IAMPA;LR + INMDA;local + IAMPA;local + IGABA;local + Isoma;dend + Iadapt + Inoise + Ibg + Istim (Equation 37)

Description of f-I curves
The f-I (current to frequency) curve of the excitatory population is

f
�
ItotalE

�
=

aItotalE � b

1� e�dðaItotalE
�bÞ (Equation 38)

where rE is the firing rate of an populations of excitatory cells, ItotalE is the total input to the population, a is a gain factor, d determines

the shape of fðItotalE Þ, such that if d is large, fðItotalE Þ acts like a threshold-linear function, with threshold b (Abbott and Chance, 2005).

The f-I curves for the inhibitory neuron populations are modeled using a threshold-linear function
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f Itotali

� �
=

ciI
total
i + r0i

0;

�
for Itotali R� r0i


ci

otherwise
(Equation 39)

where ri is the firing rate of a population of inhibitory cells, Itotali is the total input to the population.

The threshold r0i and slope ci depend on the cell type i (Bacci et al., 2003). See Table S6 for parameter values.

The firing rates are updated as follows

tAMPAdR

dt
= � R+ f

�
Itotal

�
(Equation 40)

for all cell types.

Short-term synaptic plasticity
For Figure 4, we added short-term plasticity to synapses from excitatory cells to excitatory cells (Hempel et al., 2000; Wang et al.,

2004b) and CB/SST cells (Lee et al., 2013; Silberberg and Markram, 2007) as follows (Mongillo et al., 2008).

dsNMDA

dt
= � sNMDA

tNMDA
+ xu

�
1� sNMDA

�
gNMDAgxurE (Equation 41)
dsAMPA

dt
= � sAMPA

tAMPA
+ xugAMPAgxurE (Equation 42)
du

dt
=
U� u

tu
+Uð1� uÞrE (Equation 43)
dx

dt
=
1� x

tx
� uxrE (Equation 44)

withU = 0:2;tu = 1:5s;tx = 0:2s, as inMongillo et al. (2008). We also added a term gxu = 2:5 to account for the fact that the product xu

is usually less then 1, and to keep firing rates similar to those in other simulations.

Simulated transient inhibition of SST2 populations
In Figure 5, we simulate the effects of transient inhibition to the SST2 populations in cortical areas in the frontoparietal network. The

frontoparietal network is defined according to the results of Leavitt et al. (2017), as in Figure 3. To do this, we apply an external inhib-

itory stimulus of 0.1nA to these populations for the duration of the distractor stimulus.

Dynamics and connectivity within VTA
For Figure 6, we investigate whether the dynamics of dopamine release can be learned in order to selectively maintain the desired

working memory content. Previous cortico-basal ganglia models have tackled similar problems (Braver and Cohen, 2000; Frank,

2005). Note both dopaminergic andGABAergic cells in the VTA receive excitatory input from the cortex, while themajority of inhibition

to dopaminergic cells comes from local VTA GABAergic cells (Soden et al., 2020).

The total current input to the dopamine cells in VTA is

ItotalDA = IbgDA +
Xnareas
k = 1

X2
j = 1

cvta;ctx
Ej

gvta;ctx
DA;Ej

Sk
NMDA;Ej

+
Xnareas
k = 1

X2
j = 1

cvta;ctx
Ej

gvta;ctx
DA;Ej

Sk
AMPA;Ej

+gvta
DA;IS

vta
GABA

where gvta;ctx
DA;Ej

sets the maximum strength of cortical-VTA connections. cvta;ctxEj is the fraction of synapses in an up state (Soltani and

Wang, 2006), and is updated via reinforcement learning (see below). Initial values are cvta;ctx1 = 0:7, cvta;ctx2 = 1. gvta;ctx
DA;Ej

= 0:047nA

gvta
DA;I = �0:55nA; IbgDA = 0:35nA.

The input to VTA inhibitory cells is

Itotalvta;I = Ibgvta;I +
Xnareas
k = 1

X2
j = 1

cvta;ctx
Ej

gvta;ctx
I;Ej

Sk
NMDA;Ej

+
Xnareas
k = 1

X2
j = 1

cvta;ctx
Ej

gvta;ctx
I;Ej

Sk
AMPA;Ej

where gvta;ctx
I;Ej

= 0:02nA; Ibgvta;I = 0:25nA.

Synaptic inputs to the VTA inhibitory are driven by facilitating synapses (Soden et al., 2020), as in Equations 41–44, but with x = 0:87

held constant and tu = 200ms.
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The firing rates of the dopamine cells rDA are calculated as in Equations 38 and 40. The firing rates of GABAergic cells are updated

as in Equations 39 and 40.

Cortical dopamine availability
Dopamine neurons fire bursts in response to stimuli that predict reward in working memory tasks (Schultz et al., 1993). Following

release in the cortex, dopamine levels remain elevated for seconds (Muller et al., 2014). This is approximately the period of one trial

in our simulations. Therefore, for the majority of simulations we approximated this by setting dopamine to a constant value for

each trial.

For Figure 6 the cortical model is the same as in previous figures, with the exception that dopamine availability in the cortex lDA

changes dynamically and depends on the firing rates in the dopamine neurons, and gNMDA = 6.41, gAMPA = 25.

dlDA

dt
= � lDA

tDA
+gDArDA

where tDA = 2s and gDA = 0:1. In addition, we removed the effect of dopamine on adaptation currents to simplify the learning process.

Reward-based learning
The fraction of cortex to VTA synapses in the up state is updated according to the outcome of the previous trial, using the simplified

learning rule of Soltani and Wang (2006)

cEj
T + 1ð Þ= cEj

Tð Þ+a 1� cEj
Tð Þ� �

if target j is selected and rewarded and

cEj
T + 1ð Þ= cEj

Tð Þ � a cEj
Tð Þ� �

if target j is selected and not rewarded. T is the current trial and a= 0:2 is the learning rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Correlation between D1 receptor density and other anatomical features
Many aspects of brain anatomy are spatially autocorrelated, with nearby brain areas displaying similar anatomy. This spatial auto-

correlation is not accounted for in conventional statistical tests, which often assume independence of data points. Failing to account

for the spatial autocorrelation can lead to spurious correlations between brain maps. To overcome this problem, we generated

random surrogate brain maps, with a spatial autocorrelation that closely matched the hierarchy map (Burt et al., 2020). This is

done by first randomly permuting the values in the hierarchy map, and then smoothing and rescaling the permuted map to recover

the lost spatial autocorrelation. The smoothing is perfomed by a local kernel-weighted sum of values of the k nearest neighbor re-

gions, where k is chosen to best match the autocorrelation of the original hierarchy map (Burt et al., 2020). Each of the randomly

generated surrogate maps is then correlated with the D1 receptor map. The spatially-corrected p value is then the fraction of surro-

gate maps that show a stronger Pearson correlation (negative or positive) with the D1 receptor map than the hierarchy map.

To compare the D1R density between granular and agranular cortical areas, we used a non-parametricWilcoxon rank-sum test. To

compare D1R density between areas with internopyramidisation, externopyramidisation and equal layer III and layer V pyramid sizes,

we used a non-parametric Kruskall-Wallis test.

Comparing the simulated and experimental patterns of delay activity
In Figures 3A and 3B we compare the activity pattern of the model to the experimental pattern, and investigate its dependence on

anatomical features. The experimental electrophysiology data was taken from amega-analysis by Leavitt et al. (2017) of over 90 elec-

trophysiology studies of delay period activity during working memory tasks. We first divided the cortex into persistent activity and

non-persistent activity areas for both the experimental data and simulation (Table S7). Areas were classified in the persistent activity

group if at least 3 more studies observed persistent delay period activity than a lack of such activity. We excluded areas that have

been assessed in less than three studies. Of the areas that have been studied in at least three studies, we classify an area as having

persistent activity, if more than 50% of studies have found persistent activity. However, the conclusions are not dependent on this

threshold, or the minimum number of studies (Table S8). Areas in the simulation were classified as having persistent activity if, for the

last 500ms of the trial, they had mean firing rates of at least 5Hz greater than the pre-stimulus baseline firing rates.

To shuffle anatomical connections, we shuffled connections within rows of the FLN matrix, so that the distribution of connections

and connection strengths to each area remained constant, with the identity of the connections changing. The same reordering was

applied to the SLN matrix. D1 receptor densities and spine counts were shuffled separately. Results were visualized using a custom

version of a Raincloud Plot (Allen et al., 2019) to enable concurrent visualization of the distribution and individual simulation results.

The p value is calculated as the fraction of simulations based on shuffled anatomical data that produce a delay activity pattern that

overlaps with the experimental data as well as (or better than) the original simulation.
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Lesioning of cortical areas
In Figures 3C–3H, we simulate the effects of a lesion to individual cortical areas. We do this by removing all input and output con-

nections of the lesioned area in the connectivity matrices WE;E and WI;E . For the statistical analysis of the relationship between

anatomical features and lesion effects, we removed areas V1 and V2 from the analysis. This was due to the fact that these areas

were crucial to the propagation of the visual stimulus, but not working memory per se (Figure 3; Figure S5). We performed a step-

wise-linear regression approach.
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