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Abstract

The neural processes serving the orienting of attention toward goal-relevant stimuli are generally examined with
informative cues that direct visual attention to a spatial location. However, cues predicting the temporal emergence of an
object are also known to be effective in attentional orienting but are implemented less often. Differences in the neural
oscillatory dynamics supporting these divergent types of attentional orienting have only rarely been examined. In this
study, we utilized magnetoencephalography and an adapted Posner cueing task to investigate the spectral specificity of
neural oscillations underlying these different types of attentional orienting (i.e., spatial vs. temporal). We found a spectral
dissociation of attentional cueing, such that alpha (10–16 Hz) oscillations were central to spatial orienting and theta (3–6 Hz)
oscillations were critical to temporal orienting. Specifically, we observed robust decreases in alpha power during spatial
orienting in key attention areas (i.e., lateral occipital, posterior cingulate, and hippocampus), along with strong theta
increases during temporal orienting in the primary visual cortex. These results suggest that the oscillatory dynamics
supporting attentional orienting are spectrally and anatomically specific, such that spatial orienting is served by stronger
alpha oscillations in attention regions, whereas temporal orienting is associated with stronger theta responses in visual
sensory regions.
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Introduction
Goal-directed attentional orienting is a process in which top-
down cognitive control allows for the preferential neural pro-
cessing of relevant stimuli (Posner 1980; Yantis 2002). In exper-
imental settings, this orienting process is commonly driven
by some form of cue, which signals the forthcoming appear-
ance of a task-relevant target stimulus and grants contextual
information for visual detection to optimize behavior in terms
of attention and learning (Chun and Jiang 1998; Chun 2000;
Atkinson et al. 2018; Jiang and Sisk 2020). Most commonly, cueing
is implemented in the form of a spatial indicator that predicts

the spatial location of upcoming visual stimuli (Higuchi et al.
2016), but attentional cues may also serve as temporal indicators
of the emergence of a stimulus (Olson and Chun 2001). In terms
of the neural dynamics serving attentional orienting, there are a
series of well-studied functional networks that are implicated in
this cognitive process. Briefly, the dorsolateral prefrontal cortex
(dlPFC), temporoparietal junction (TPJ), superior parietal, and
higher visual areas (Clark and Hillyard 1996; Corbetta and Shul-
man 2002; Snyder and Chatterjee 2006; Nagata et al. 2012; Chang
et al. 2013) are known to be essential cortical regions for the ori-
enting and reorienting of attention in the human brain. However,
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the cognitive neuroimaging community has also historically
been biased toward the use of spatial rather than temporal cues
in studying the cortical areas related to attentional orienting
(Corbetta and Shulman 2002; Doesburg et al. 2016; Proskovec
et al. 2018; Spooner et al. 2020b). Thus, while the networks
serving spatial orienting have been studied extensively, those
involved in attentional orienting in other domains have been far
less examined.

Previous functional magnetic resonance imaging (MRI) work
utilizing the Attention Network Test (ANT) and related atten-
tion cueing paradigms has established a neuroanatomical dis-
tinction between spatial and temporal orienting of attention.
Spatial cueing of attention appears to be generally supported
by the right intraparietal sulcus (IPS), left frontal eye fields, and
bilateral superior parietal lobules, whereas temporal attentional
cueing, or alerting, has been more frequently associated with
a left hemispheric network that includes the inferior premotor
cortex, IPS, and frontal regions, as well as the right TPJ (Coull
and Nobre 1998; Coull et al. 2000; Fan et al. 2002; Fan et al.
2005). Though the ANT is a widely used task that probes an
array of attention functions (e.g., spatial orienting, temporal
orienting/alerting, and executive attention), it does have several
limitations. For example, the paradigm does not balance the
degree of visual stimulation across conditions, which compli-
cates the investigation of attentional effects in many early visual
regions. Additionally, in order to target each of the distinct com-
ponents of attention, the ANT includes multiple conditions, but
the inclusion of these multiple conditions increases the duration
of the task and makes it largely infeasible for very young and
older participants. The long duration also makes it difficult to
implement in imaging environments where the time between
successful trials needs to be extended (e.g., oscillatory analyses
in magnetoencephalography or MEG; Wilson et al. 2016).

Understanding not only the spatial features of these func-
tional brain networks, but also their temporal and spectral sig-
natures is essential, as dynamic neural oscillations appear to
represent a fundamental mechanism by which the brain orga-
nizes and transmits information. Given the well-established
roles of theta (3–7 Hz) and alpha (8–13 Hz) cortical oscillations
in visual attentional processing, it is likely that both of these
slower-frequency oscillations participate in temporal and spa-
tial orienting in different capacities. Theta cortical rhythms
are commonly associated with the temporal segmentation of
incoming visual information during the allocation of attentional
resources (Jensen 2006; Busch et al. 2009; Landau and Fries 2012;
Roberts et al. 2013), whereas alpha oscillations serve visuospatial
attention by allowing functional disinhibition of the visual space
to facilitate processing of relevant stimuli (Klimesch et al. 1998;
Jensen and Mazaheri 2010; Dombrowe and Hilgetag 2014; van
Diepen et al. 2016; Foster et al. 2017). Thus, given these broad
associations, one might expect temporal orienting to be asso-
ciated with stronger theta responses, whereas spatial orienting
would be linked to more robust alpha responses. Unfortunately,
this hypothesis has not yet been empirically tested.

In the current study, we recorded task-based MEG in a group
of healthy young adults to probe the underlying oscillatory
dynamics involved in spatial and temporal attentional orient-
ing, to quantify the dynamics and determine whether these
subprocesses are spectrally specific in the human brain. Given
the limitations noted above with using the ANT in studies of
oscillatory activity, we utilized a novel adaptation of the Posner
(1980) cueing paradigm, which targeted differential attentional
cueing effects by using 2 types of cues. Briefly, one type of cue

was temporally variable and spatially reliable, whereas the other
type of cue was temporally consistent and spatially irrelevant.
MEG was recorded throughout the task, enabling the precise
spatiotemporal identification of the oscillatory dynamics sup-
porting attentional cueing, which is imperative considering the
rapid timescale of attentional processing (Proskovec et al. 2018;
Wiesman et al. 2019; Arif et al. 2020). Given the previous litera-
ture, we hypothesized that spatial and temporal attentional ori-
enting would involve spectrally distinct neural dynamics across
attentional networks (Jensen 2006; Busch et al. 2009; Händel et al.
2011; Landau and Fries 2012; Wiesman et al. 2017b; Wiesman
and Wilson 2019). More explicitly, we expected spatial orienting
to elicit more robust alpha responses and temporal orienting
to generate stronger theta activity in cortical areas previously
associated with attentional processing.

Materials and Methods
Participants

Thirty-four healthy young adults between the ages of 19 and 36
(mean [M] = 26.34; standard deviation [SD] = 4.00) were recruited
to participate in this study. Exclusionary criteria included any
medical illness affecting central nervous system function, neu-
rological and/or psychiatric disorder, history of head trauma,
nonremovable metal implant that would adversely affect data
acquisition and current substance abuse. All participants had
normal or corrected-to-normal vision. Each participant provided
written informed consent and was compensated for their time
and travel. The Institutional Review Board at the University
of Nebraska Medical Center reviewed and approved this study,
and all protocols were in accordance with the Declaration of
Helsinki.

Experimental Paradigm and Behavioral Analysis

For MEG recording, participants were seated in a nonmagnetic
chair within a magnetically shielded room, with their heads
positioned within the sensor array. During recording, each par-
ticipant completed a novel adaptation of the Posner cueing
task in which all trials were validly cued (Posner 1980). Par-
ticipants were instructed to maintain fixation on a centrally
presented square throughout the task, which encompassed 2
diagonal lines to form an “X” (Fig. 1). Each trial began with
the presentation of the fixation box for 2200 ms (±200 ms).
Next, 2 adjacent, bisected segments of the X within the fixation
square were shaded to form an arrow, which served as the
cue. Shading of the 2 rightmost segments created an arrow
pointing to the left, and similar right, up, and down facing arrows
were created by shading the 2 leftmost, 2 lower, and 2 upper
segments, respectively. For one half of all trials presented to
each participant, the direction of this cue provided information
regarding the spatial location of the upcoming target stimulus
but no information regarding its timing. On the other half of
trials, the cue provided useful information regarding when the
upcoming target would appear but no information regarding
its spatial location. For the trials where a spatial cue was pre-
sented, this cue would remain for a randomly jittered interval
of 900 ± 400 ms, whereas for temporal cues a fixed interval of
900 ms was used. Importantly, whether the left/right or up/down
cue pairs provided the spatial or temporal information was
counterbalanced across participants. In other words, for one-
half of all participants, the left/right arrows would indicate the
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Figure 1. Attentional cueing task and behavioral performance. (A) A fixation box with 2 diagonal lines was presented for 2200 (±200) ms, followed by either a spatial
cue (version 1: shaded arrow pointing left or right; version 2: shaded arrow pointing up or down) for 900 (±400) ms or a temporal cue (version 1: shaded arrow pointing
up or down; version 2: shaded arrow pointing left or right) for 900 ms. The target stimulus then appeared to one side of the cue (version 1: left or right; version 2:
top or bottom) for 1000 ms. Participants responded regarding the location of the opening on the target stimulus (version 1: top = right middle finger, bottom = right

index finger; version 2: right = right index finger, left = right middle finger). Note for both conditions in version 2 of the task, the cue panel on the top corresponds with
the target panel on the left and the bottom cue panel precedes the right target panel. Importantly, the version of the task administered was counterbalanced across
participants. (B) Metrics for behavior are presented on the y-axis and the 2 conditions (spatial vs. temporal) are separated on the x-axis. Participants responded more
quickly (P < 0.001) and accurately (P = 0.034) in the spatially relative to the temporally cued trials. ∗P < 0.05. ∗∗P < 0.001.
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spatial location of the upcoming target, whereas for the other
half the up/down arrows would provide this information. Fur-
thermore, whether the target stimuli were presented on the right
and left or the top and bottom of the central fixation box for each
participant was covaried as a function of the spatial cues and
held constant across both conditions for each participant. Note
that the location of the target was also balanced across all trials.
The target consisted of an empty box with an opening on one
side, presented for 1000 ms, which was covaried to never match
the direction of the spatial cues (e.g., openings were on the
left/right when the spatial cues pointed up/down). Participants
were instructed to indicate by button press the side of the box on
which the opening appeared (right index = bottom/right; right
middle finger = top/left). The 2 versions of the task are shown
in Figure 1A, and the instructions given to the participants are
provided in the Supplementary Methods. On average, each trial
lasted 4100 ms, and each participant completed a total of 200
trials, with 100 being spatially cued and 100 temporally cued,
equating to a total run time of about 14 min. Finally, note that
this task was one of 4 tasks completed in the scanner during the
study visit. Data from the other 3 experiments, which were unre-
lated to the current attentional orienting task, will be reported
in later manuscripts.

MEG Data Acquisition

MEG data acquisition, structural coregistration, preprocessing,
and sensor-/source-level analyses followed a similar pipeline as
a number of previous manuscripts from our laboratory (Wies-
man et al. 2017a; Kurz et al. 2018; Proskovec et al. 2018; Spooner
et al. 2018, 2019; Wiesman and Wilson 2019, 2020a). All record-
ings took place in a 1-layer magnetically shielded room with
active shielding engaged for environmental noise compensa-
tion. A 306-sensor Elekta/MEGIN MEG system (Helsinki, Finland),
equipped with 204 planar gradiometers and 102 magnetometers,
was used to sample neuromagnetic responses continuously at
1 kHz with an acquisition bandwidth of 0.1–30 Hz. Participants
were monitored by a real-time audio–video feed from inside the
shielded room during MEG data acquisition. Each MEG dataset
was individually corrected for head motion and subjected to
noise reduction using the signal space separation method with
a temporal extension (MaxFilter v2.2; correlation limit: 0.950;
correlation window duration: 6 s (Taulu and Simola 2006).

Structural MRI Processing and MEG Coregistration

Prior to MEG acquisition, 4 coils were attached to the partici-
pants’ heads and localized, together with the 3 fiducial points
and scalp surface, using a 3-D digitizer (Fastrak 3SF0002, Pol-
hemus Navigator Sciences, Colchester, VT). Once positioned in
the MEG, the coils produced an electrical current with a unique
frequency label and an accompanying measurable magnetic
field, which allowed each coil to be localized in reference to the
MEG instrument sensors throughout recording. Since coil loca-
tions were also known in head coordinates, all MEG measure-
ments could be transformed into a common coordinate system.
With this coordinate system, each participant’s MEG data were
coregistered with their individual structural T1-weighted MRI
data using BESA MRI (version 2.0) prior to source-space anal-
ysis. Structural MRI data were aligned parallel to the anterior
and posterior commissures and transformed into standardized
Talairach space. Following source analysis (i.e., beamforming),
each participant’s 4.0 × 4.0 × 4.0 mm functional images were

also transformed into standardized space using the transform
that was previously applied to the structural MRI volume and
spatially resampled.

MEG Preprocessing, Time–Frequency Transformation,
and Sensor-Level Statistics

Cardiac and blink artifacts were identified in the raw MEG data
and removed with signal-space projection, which was subse-
quently accounted for during source reconstruction (Uusitalo
and Ilmoniemi 1997). The continuous magnetic time series was
then bandpass filtered between 0.5 and 200 Hz, plus a 60-Hz
notch filter, and divided into 1500-ms epochs, with the baseline
extending from −500 to 0 ms prior to the onset of the visual
cue. Epochs containing artifacts were rejected using a fixed
threshold method, supplemented with visual inspection. Briefly,
in MEG, the raw signal amplitude is strongly affected by the dis-
tance between the brain and the MEG sensors, as the magnetic
field strength falls off sharply as the distance from the current
source increases. To account for this source of variance across
participants, as well as other sources of variance, we used an
individually determined threshold based on the within-subject
signal distribution for both amplitude and gradient to reject arti-
facts. Across all participants, the average amplitude threshold
for rejecting artifacts was 1126.03 (SD = 325.89) fT/cm and the
average gradient threshold was 421.15 (SD = 142.30) fT/(cm∗ms).
Across the group, an average of 167.79 (SD = 16.06) out of 200
possible trials per participant were used for further analysis in
this experiment, including an average of 84.21 (SD = 8.63) out
of 100 trials per participant in the spatially cued condition and
an average of 83.58 (SD = 7.78) out of 100 trials per participant
in the temporally cued condition. Importantly, our comparisons
between the conditions were not compromised by differences in
the number of accepted trials per condition, as this metric did
not significantly differ across conditions (P > 0.20).

Complex demodulation (Papp and Ktonas 1977; Kovach and
Gander 2016) was used to transform the artifact-free epochs
into the time–frequency domain, and the resulting spectral
power estimations were averaged per sensor to generate time–
frequency plots of mean spectral density. The time–frequency
analysis was performed with a frequency step of 2 Hz and a time
step of 25 ms between 4 and 100 Hz to observe higher frequency
activity (e.g., alpha, gamma). We also used a complementary
time–frequency analysis performed with a 1 Hz/50 ms resolution
from 2 to 100 Hz for better identification of lower frequency
activity in the theta range. These sensor-level data were
then normalized by each respective bin’s baseline power for
visualization purposes, calculated as the mean power during
the −500 to 0 ms baseline period.

The specific time–frequency windows used for source imag-
ing were determined by statistical analysis of the sensor-level
spectrograms across both conditions and the entire array of
gradiometers. Each data point in each sensor-level spectrogram
was initially evaluated using a mass univariate approach based
on the general linear model. To reduce the risk of false posi-
tive results while maintaining reasonable sensitivity, a 2-stage
procedure was followed to control for Type 1 error. In the first
stage, paired sample t-tests against baseline were conducted
on each data point and the output spectrogram of t-values
was thresholded at P < 0.05 to define time–frequency bins con-
taining potentially significant oscillatory deviations across all
participants. In stage 2, the time–frequency bins that survived
the threshold were clustered with temporally and/or spectrally
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neighboring bins (per sensor) that were also above the threshold
(P < 0.05), and a cluster value was derived by summing all of the
t-values of all data points in the cluster. Nonparametric permu-
tation testing was then used to derive a distribution of cluster
values, and the significance level of the observed clusters (from
stage one) were tested directly using this distribution (Ernst
2004; Maris and Oostenveld 2007). For each comparison, 10 000
permutations were computed to build a distribution of cluster
values. Based on these analyses, rectangular time–frequency
windows within significant clusters were identified and used to
guide source-level analysis.

MEG Source Analysis

Cortical sources were imaged through an extension of the lin-
early constrained minimum variance vector beamformer (Van
Veen et al. 1997; Gross et al. 2001; Hillebrand et al. 2005), which
employs spatial filters in the frequency domain to calculate
source power for the entire brain volume. The single images
were derived from the cross spectral densities of all combina-
tions of MEG gradiometers averaged over the time–frequency
range of interest, and the solution of the forward problem for
each location on a grid specified by input voxel space. In prin-
ciple, the beamformer operator generates a spatial filter for
each grid point that passes signals without attenuation from
the given neural region, while suppressing activity in all other
brain areas. The filter properties arise from the forward solution
(lead field) for each location on a volumetric grid specified
by input voxel space, and from the MEG covariance matrix.
Basically, for each voxel, a set of beamformer weights is deter-
mined, which amounts to each MEG sensor being allocated a
sensitivity weighting for activity in the particular voxel. This
set of beamformer weights is the spatial filter unique to the
given voxel and this procedure is iterated until such a filter is
computed for each voxel in the brain. Activity in each voxel is
then determined independently and sequentially to produce a
volumetric map of electrical activity with relatively high spatial
resolution. In short, this method outputs a power value for each
voxel in the brain, determined by a weighted combination of
sensor-level time–frequency activity. Following convention, the
source power in these images was normalized per participant
using a prestimulus noise period (i.e., baseline) of equal duration
and bandwidth (Hillebrand et al. 2005). MEG preprocessing and
imaging used the Brain Electrical Source Analysis (version 7.0)
software. Note that we also conducted a follow-up beamformer
analysis using the magnetometer sensors and that this analysis
was identical, with the exception of the input data (i.e., artifact-
free magnetometer data instead of artifact-free gradiometer
data).

Normalized source power was computed for the selected
time frequency bands over the entire brain volume per partic-
ipant at 4.0 × 4.0 × 4.0 mm resolution. Each participant’s func-
tional images were transformed into standardized space using
the transform that was previously applied to the structural
images and then spatially resampled. The resulting 3D maps of
brain activity were averaged across participants and conditions
to qualitatively assess the anatomical basis of the significant
oscillatory responses identified through the sensor-level analy-
sis. To identify the effect of cue type on oscillatory responses, we
performed a whole-brain analysis of the cueing effect (i.e., spa-
tial vs. temporal) per each oscillatory response of interest, using
paired-sample t-tests. To account for multiple comparisons, we
employed a nonparametric cluster-based permutation approach

similar to that performed on the sensor-level spectrograms, with
an initial cluster-forming threshold of P < 0.001, 10 000 permuta-
tions, and a final cluster size threshold of k > 10 and corrected
significance threshold of P < 0.05. From the remaining signif-
icant clusters, pseudo t-values per condition were extracted
from the peak voxels for visualization purposes. Cluster-based
permutation testing on sensor-array and source-level data was
performed in BESA Statistics (v2.0).

Virtual Sensor Extraction for Single-Trial Analyses
and Intertrial Phase Coherence

Using the peak voxel locations identified in the whole-brain
statistical analysis, virtual sensor data were computed by apply-
ing the sensor-weighting matrix derived through the forward
computation to the preprocessed signal vector, which yielded
a time series corresponding to the location of interest. These
virtual sensor data were then decomposed into time–frequency
space per trial and averaged across the previously identified
time–frequency extents (i.e., used in the beamformer analy-
sis). This time–frequency analysis resulted in absolute ampli-
tude estimates of each time–frequency domain response per
participant for each condition and for every trial. These esti-
mates were then used to compute a linear mixed-effects model
of single-trial task performance (i.e., RT) on oscillatory neu-
ral dynamics (model = RT ∼ Condition∗ResponseAmplitude; ran-
dom effects = ∼ 1|Participant/Trial) using the rlme toolbox in R.
In addition, we computed the intertrial phase coherence (ITPC)
from the extracted virtual sensors, which reflects the intertrial
variability of the phase relationship at the single-trial level.
These data were separately averaged over the alpha and theta
spectral windows used in our beamformer analyses and the 350-
ms time period prior to target onset and then compared between
conditions.

Results
Behavioral Analysis

One participant was excluded from all analyses due to
artifactual MEG data. The remaining 33 participants gen-
erally performed well on the task in both the spatially
(M = 93.65%, SD = 5.42%) and temporally (M = 92.18%, SD = 6.17%)
cued conditions. These differences in task performance
and reaction time were statistically significant, such that
participants were less accurate (t32 = 2.22, P = 0.034) and
slower to respond (t32 = −5.73, P < 0.001) during temporally
cued (M = 553.24 ms, SD = 114.08 ms) versus spatially cued
(M = 527.03 ms, SD = 103.79 ms) trials. Importantly, the direction
of these effects indicates that there was no speed-accuracy
tradeoff in relation to the cueing effects on task performance.
Behavioral metrics can be viewed in Figure 1B.

MEG Sensor-Level Results

Time–frequency analysis of the sensor-level spectrograms
across both conditions revealed 2 significant clusters of
oscillatory responses to the task: one in the theta (3–6 Hz; 0–
350 ms) and another in the alpha band (10–16 Hz; 250–500 ms;
Fig. 2A), both of which were strongest in the gradiometers
near posterior parietal and occipital cortices (both P’s < 0.001,
corrected). Importantly, only time bins that ended no later than
500 ms after the cue onset were used in further analysis, as this
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Figure 2. Grand averaged sensor-level time–frequency spectrograms and beamformer images for alpha and theta oscillatory responses. (A) Time–frequency spectro-
grams from representative sensors near occipitoparietal cortices showing oscillatory alpha (top; MEG2513 channel; 10–16 Hz; 250–500 ms; P < 0.001) and theta (bottom;

MEG2313; 3–6 Hz; 0–350 ms; P < 0.001) responses averaged across trials and participants. Time is denoted on the x-axis and frequency is on the y-axis. The dotted line
to the left (at 0 ms) indicates the onset of the attentional cue and the dotted line to the right (at 500 ms) represents the onset of the target stimulus for the shortest
possible spatial cue duration (i.e., 900 ± 400 ms). Color bars above each spectrogram shows the percent change from baseline. (B) The desynchronization or decrease
in alpha power was generated by neural populations in the bilateral occipital cortices, whereas synchronizations or increases in theta emerged from bilateral primary

visual cortices. The color scale bar above each row of average maps indicates the response amplitude scale (in pseudo-t).

was the potential onset of the earliest target stimulus in the
spatial cueing condition.

MEG Source Results

To examine the neuroanatomical origins of the significant
sensor-level oscillatory activity, each time–frequency bin was
imaged using a frequency-resolved beamformer. The resulting
images from each time–frequency response were first grand
averaged per response across participants and conditions, which
indicated that the increases in theta activity were strongest in
the bilateral visual cortices, left precuneus, and superior parietal
regions, whereas the strong decreases in alpha activity were
distributed across bilateral lateral occipital cortices (Fig. 2B). The
conditional averages are also available in Figure 2B.

We then computed whole-brain paired t-tests with cluster-
based permutation correction to indicate which distinct neu-
roanatomical regions differ between the 2 cueing conditions. For
the theta response, there was a significantly stronger increase
following the temporal cue relative to the spatial cue in the
left primary visual cortex (Fig. 3; P = 0.027, corrected). A sig-
nificant cueing effect was also evident in the alpha band in
left lateral occipital, right hippocampal, left posterior cingu-
late (PCC), and right dlPFC cortices (Fig. 4; all P’s < 0.001, cor-
rected). In the left lateral occipital, right hippocampal, and poste-
rior cingulate clusters the alpha decreases (from baseline) were
stronger during the spatially cued trials relative to the tempo-
rally cued trials. In contrast, the right dlPFC exhibited essentially
no alpha response during the spatially cued trials, along with an
increase in alpha activity during temporally cued trials. Since
gradiometers are primarily sensitive to cortical responses and
less sensitive to deep brain signals, such as the hippocampus,

we repeated the alpha-band beamformer analysis using only
the magnetometers in an attempt to validate our gradiometer
findings. Consistent with the gradiometer findings, the magne-
tometer data indicated that the alpha oscillations (i.e., decreases
from baseline) were stronger in the right hippocampus dur-
ing spatially cued trials compared with temporally cued trials
(Fig. 5; P < 0.001, corrected) thus supporting the veracity of our
gradiometer findings.

Relationships Between Single-Trial Neural Oscillatory
Responses and Behavior

To investigate whether these neural dynamics were directly
related to performance on our task, we extracted peak voxel
virtual sensor time series from each of the clusters reported
above, per each trial for every participant. We then conducted
a time–frequency analysis of these data and averaged over the
previously reported time–frequency bins (from the sensor anal-
ysis) for each oscillatory response and used the resulting values
to compute single-trial linear mixed-effects models of task per-
formance (i.e., RT) on neural response amplitude as a function
of cueing condition. To account for the skewness of the MEG
data, a log transform was applied. This analysis revealed a
significant interaction between alpha responses in the right
hippocampus and cueing condition on task performance, such
that the positive relationship between hippocampal baseline
alpha responses and reaction times (i.e., reduced absolute alpha
activity predicted better task performance) was stronger in the
spatially cued condition as compared with the temporally cued
condition (Fig. 6; t2709 = −2.01, P = 0.045). Finally, we computed
the ITPC to examine differences in phase consistency prior to
target onset in each condition. These analyses indicated that
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Figure 3. Effects of spatial versus temporal attentional orienting on theta activity. A whole-brain t-test revealed differences in theta response amplitude between
conditions (i.e., temporal vs. spatial cueing). This effect was significant in the left occipital cortex (Talairach: −22, −88, 2), where significantly stronger increases in
theta activity in temporal relative to spatial trials was observed (P = 0.027, corrected).

Figure 4. Effects of spatial versus temporal attentional orienting on alpha activity. A whole-brain t-test revealed differences in alpha response amplitude between

conditions (i.e., temporal vs. spatial cueing). This effect was significant in the left lateral occipital cortex (top left; Talairach: −38, −73, 13), right hippocampus (top right;
Talairach: 26, −20, −10), and left PCC (bottom right; Talairach: −2, −25, 38) with more robust decreases in alpha activity during spatially compared with temporally
cued trials (all P’s < 0.001, corrected). In contrast, a significant cluster in the right dlPFC (bottom left; Talairach: 30, 23, 41) exhibited stronger increases in alpha during
temporally cued in contrast to spatially cued trials (P < 0.001, corrected).

alpha ITPC did not differ between conditions (all P’s > 0.05) but
that the phase of theta oscillations was significantly more con-
sistent (i.e., higher ITPC values) during temporal compared with
spatial trials (P < 0.001).

Discussion
In this study, we used an adapted Posner (1980) task and MEG
to identify the distinct neural oscillatory responses support-
ing attentional orienting to spatial and temporal cues. Fore-
most, our results indicated spectral specificity in the neural

responses underlying temporal and spatial attentional orienting
across a set of regions commonly associated with visual atten-
tion. Specifically, stronger increases in theta (3–6 Hz) activity
were observed during temporal orienting of attention within
the primary visual cortex, whereas stronger decreases in alpha
(10–16 Hz) were present in the lateral occipital, posterior cingu-
late, and hippocampal regions during the spatial orienting of
attention. In contrast, an alpha increase was observed during
temporal orienting in the right dlPFC, and this response was
not seen during spatial orienting. Importantly, single-trial lin-
ear mixed-effects modeling revealed that the strength of the
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Figure 5. Validation of the alpha difference in the right hippocampus using
magnetometers. A whole-brain voxel-wise t-test on the beamformer images
computed using the magnetometers revealed a conditional difference in the
right hippocampus that was very similar to that observed using the gradiometers

(Fig. 4), with alpha decreases being much stronger in the spatial compared with
the temporal cuing trials in the right hippocampus (P < 0.001, corrected).

alpha oscillatory response in the right hippocampus predicted
improved performance more robustly during spatial compared
with temporal orienting. Below we discuss the implications of
these findings of spectral and spatial distinctions between the
neural oscillations serving temporal and spatial orienting of
attention.

We hypothesized that the underlying oscillatory dynamics
involved in temporal and spatial attentional orienting would
be spectrally specific, such that theta oscillations would be
more engaged in temporal orienting and alpha oscillations being
more essential to spatial orienting. In line with our hypothesis,
stronger theta oscillations were observed during temporal com-
pared with spatial orienting within the left primary visual cor-
tex. This aligns well with previous literature, as theta oscillations
are known to be critical in the visual system, principally for the
temporal segmentation of information (Forte et al. 1999; Busch
et al. 2009; Gupta et al. 2012; Landau and Fries 2012; Goodbourn
and Forte 2013; Wiesman et al. 2017b). Moreover, the phase of the
theta response prior to target onset was more consistent during

Figure 6. Impact of hippocampal neural activity on reaction time. A significant

interaction between alpha responses in the right hippocampus and cueing con-
dition was observed on reaction time, such that weaker absolute alpha activity
in the spatially cued condition related more robustly to improved behavior (i.e.,
faster RT) relative to the temporally cued condition (t2709 =−2.01, P = 0.045). In

addition, 95% confidence intervals are shown in blue and green for temporal
and spatial conditions, respectively.

temporal trials relative to spatial trials in the left primary visual
cortex, which may indicate the use of temporal information in
the visual cortices during attentional allocation (Stefanics et al.
2010; Cravo et al. 2013). Thus, our findings extend this con-
ceptualization and suggest that the temporal organization and
segmentation of visual information is crucial for the temporal
orienting of attention.

Also in agreement with our hypothesis, spatial orienting
induced stronger alpha oscillations (i.e., decreases from base-
line) relative to temporal orienting in the right hippocampus,
left lateral occipital cortex, and left PCC. As mentioned previ-
ously, extant literature has demonstrated that alpha decreases
(i.e., desynchronizations) in the posterior cortices during visual
attention serves to disinhibit the processing of incoming visual
information (Klimesch et al. 1998; Jensen and Mazaheri 2010;
Dombrowe and Hilgetag 2014; van Diepen et al. 2016; Foster et al.
2017; McDermott et al. 2017; Wiesman et al. 2018, 2019; Wiesman
and Wilson 2019, 2020b; McCusker et al. 2020). Thus, our find-
ing of stronger alpha decreases during spatial versus temporal
attentional orienting fits well with these widely reported results.
In contrast, alpha frequency activity in the human hippocampus
is less commonly reported; however, it has been shown to be
important for the recollection of remembered spatial scenes
(Herweg et al. 2016). Further, despite the relatively low sensitivity
of MEG to deeper brain sources, we remain cautiously optimistic
regarding this finding, as our task is particularly well designed
to detect such signals. Specifically, the cueing portion of our task
utilizes a relatively minor visual change and closely balances
the visual stimulation present in each condition. This serves
to reduce the amount of signal leakage from posterior occipi-
tal sources and likely allows us to measure other, less robust
neural responses more accurately. Furthermore, our follow-up
magnetometer analysis provided supportive evidence in regard
to the veracity of this right hippocampal response. Hippocampal
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response amplitude was also significantly related to task perfor-
mance at the single-trial level, which further bolsters our confi-
dence in this result. The right hippocampus is well established
as being essential in associative learning and memory, partic-
ularly in visuospatial contexts (Witter and Amaral 1991; Moser
et al. 1993, 2017; Burgess et al. 2002). Thus, we can speculate
the hippocampus may exhibit preparatory alpha disinhibition
during spatial attentional orienting; however, a more nuanced
examination of the role of the right hippocampus in spatial
orienting is certainly warranted in future studies.

A similar pattern of effects was also found in the left lateral
occipital cortex, in which a more robust alpha decrease was
observed during spatial orienting. Visual attention is typically
thought to rely on cortical areas beyond the primary visual
cortices during attention processing (Clark and Hillyard 1996;
Tootell et al. 1998; Brefczynski and DeYoe 1999; Kanwisher and
Wojciulik 2000). Therefore, this activity in the left lateral occipi-
tal cortex likely indicates better top-down control of functional
information gating during spatial orienting. Such stronger alpha
oscillatory activity during spatial orienting was also present in
the PCC. Some studies suggest the PCC takes part in prepar-
ing neural attention resources during top-down visuospatial
attention by connecting task motivation with attentional control
(Small et al. 2003; Bagurdes et al. 2008). Within this frame-
work, our finding of stronger responses during spatial relative
to temporal orienting would suggest that the PCC assists in
coordinating attentional control within the visual space.

In contrast to our other findings, there was a synchroniza-
tion or increase in alpha activity during temporal orienting
in the right dlPFC, and virtually no consistent alpha response
was observed during spatial orienting. Previous neuroimaging
literature supports the dlPFC as having an essential role in
top-down spatial attentional processing and executive control
(Knight et al. 1995; Daffner et al. 2000; Gehring and Knight 2002;
Yamasaki et al. 2002; Rossi et al. 2009). As increases in alpha
activity are often thought to reflect the inhibition incoming
information or local processing (Sauseng et al. 2005; Händel
et al. 2011; Wiesman and Wilson 2019), it is likely that the right
dlPFC may have specifically been inhibited during temporal
orienting, when spatial orienting would have been deleterious
to performing the task at hand.

This study is not without limitations, with perhaps the
most prominent being that the participants were all healthy
young adults. To combat this limitation, future studies should
utilize this task in different populations, such as a healthy aging
population or patient populations who suffer from attentional
deficits. Neuropsychological and neuroimaging research has
found declines in attentional control and aberrations in the
subsequent neural dynamics as a function of aging (Madden
et al. 1997; Cabeza 2001; Kramer and Kray 2006; Persson et al.
2006; Madden 2007). Most recently, the oscillatory dynamics in
reorienting attention have been found to be affected by the aging
process in healthy adults (Arif et al. 2020), making this potential
line of research all the more urgent. The absence of a “no cue”
condition may also limit the findings of our study. Without a
no cue condition, we could not fully confirm that the temporal
cue had a significant orienting effect over no cue. However, if
it were the case that the neural differences were explainable
only by the spatial cue being more effective at orienting
participants’ attention, we would expect that both the theta and
the alpha responses would have been stronger (i.e., stronger
theta synchronizations and alpha desynchronizations) in this
condition, in line with previous literature (Sauseng et al. 2005;

Klimesch 2012; Landau and Fries 2012; van Diepen et al. 2016;
Harris et al. 2017). However, our findings indicated that theta
and alpha responses were systematically stronger for different
types of attentional orienting, suggesting that these differing
cue types were recruiting spatially and spectrally distinct neural
resources. Nonetheless, future work using this task should
consider adding a no cue condition, as this would strengthen
the overall design and help confirm that different processes
are fully engaged (Fan et al. 2002, 2005; Callejas et al. 2005).
The relatively low task difficulty of this study is also a limiting
factor. Altering the cognitive load of an attentional task has been
shown to impact cueing effects during the orienting of attention
(Santangelo et al. 2008), and thus, by varying load difficulty,
future studies may provide more direct and perhaps discrete
interpretations of our findings. Another existing limitation
of this study lies in the relatively limited sensitivity of MEG
to neural activity originating from subcortical areas. Though
we observed an interesting and spectrally specific effect of
attentional orienting in the hippocampus, other subcortical
regions implicated in the orienting of attention may have
been overlooked. Nascent methods in MEG, explicitly optically
pumped magnetometers (OPM), have the potential to allow
for more effective visualization of subcortical structures (Barry
et al. 2019; Tierney et al. 2020). Thus, future studies with OPMs
using this task could possibly address this limitation. A final
potential future direction for this study, due to our spectrally
specific findings within alpha and theta frequencies, would be
to employ frequency-targeted neurostimulation in an attempt to
causally dissociate attentional orienting networks. Supporting
this, frequency-targeted neurostimulation (e.g., transcranial
alternating current stimulation) has been demonstrated to
influence oscillatory activity during visuospatial processing
and top-down visual attention in a spectrally specific manner
(Wiesman et al. 2018; Wilson et al. 2018; Clayton et al. 2019;
McDermott et al. 2019; Spooner et al. 2020a).

To close, in this study we found that the distinct subtypes
of attentional orienting are supported by discernible spectrally
specific neural oscillations. Increases in theta activity appear to
be more relevant for temporal orienting, particularly in visual
areas. Conversely, decreases in alpha activity were stronger dur-
ing spatial attentional orienting within regions associated with
higher-order attentional networks. These findings are the first
to empirically demonstrate the diverging oscillatory dynam-
ics supporting the temporal and spatial orienting of attention
and provide key knowledge for future studies of attentional
processing, both in health and disease.
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Supplementary material can be found at Cerebral Cortex online.
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