Overlooked tertiary sulci serve as a meso-scale link between microstructural and functional properties of human lateral prefrontal cortex

https://doi.org/10.1523/JNEUROSCI.2362-20.2021

Cite as: J. Neurosci 2021; 10.1523/JNEUROSCI.2362-20.2021

Received: 8 September 2020
Revised: 22 December 2020
Accepted: 5 January 2021

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Title: Overlooked tertiary sulci serve as a meso-scale link between microstructural and functional properties of human lateral prefrontal cortex

Abbreviated title: Tertiary sulcal morphology in human prefrontal cortex

Jacob A. Miller1*, Willa I. Voorhies1,2, Daniel J. Lurie2, Mark D’Esposito1,2, Kevin S. Weiner1,2

1Helen Wills Neuroscience Institute, 2Department of Psychology, University of California-Berkeley

*Corresponding author:
Jacob A. Miller
jacob_miller@berkeley.edu
210 Barker Hall
University of California-Berkeley
Berkeley, CA, 94720

Figures: 9
Tables: 2
Extended Data Figures: 2

Word counts
Abstract: 250
Introduction: 638
Discussion: 1313
Significance Statement: 118

Keywords: prefrontal cortex, functional neuroanatomy, morphology, gradients, connectivity, brain mapping
Abstract

Understanding the relationship between neuroanatomy and function in portions of cortex that perform functions largely specific to humans such as lateral prefrontal cortex (LPFC) is of major interest in systems and cognitive neuroscience. When considering neuroanatomical-functional relationships in LPFC, shallow indentations in cortex known as tertiary sulci have been largely unexplored. Here, by implementing a multi-modal approach and manually defining neuroanatomical structures in 72 hemispheres (in both males and females), we show that a subset of these overlooked tertiary sulci serve as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. For example, the posterior middle frontal sulcus (pmfs) is a tertiary sulcus with three components that differ in their myelin content, resting state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. Further, generating microstructural profiles of myelin content across cortical depths for each pmfs component and the surrounding middle frontal gyrus (MFG) shows that both gyral and sulcal components of the MFG have greater myelin content in deeper compared to superficial layers and that the myelin content in superficial layers of the gyral components is greater than sulcal components. These findings support a classic, yet largely unconsidered theory that tertiary sulci may serve as landmarks in association cortices, as well as a modern cognitive neuroscience theory proposing a functional hierarchy in LPFC. As there is a growing need for computational tools that automatically define tertiary sulci throughout cortex, we share pmfs probabilistic sulcal maps with the field.
Significance statement

Lateral prefrontal cortex (LPFC) is critical for functions that are thought to be specific to humans compared to other mammals. However, relationships between fine-scale neuroanatomical structures largely specific to hominoid cortex and functional properties of LPFC remain elusive. Here, we show that these structures, which have been largely unexplored throughout history, surprisingly serve as markers for anatomical and functional organization in human LPFC. These findings have theoretical, methodological, developmental, and evolutionary implications for improved understanding of neuroanatomical-functional relationships not only in LPFC, but also in association cortices more broadly. Finally, these findings ignite new questions regarding how morphological features of these neglected neuroanatomical structures contribute to functions of association cortices that are critical for human-specific aspects of cognition.
Introduction

Understanding how anatomical structures of the brain support functional gradients and networks that perform computations for human-specific aspects of cognition is a major goal in systems and cognitive neuroscience. Of the many anatomical structures to target, lateral prefrontal cortex (LPFC) is expanded in the human brain relative to non-human primate species commonly used in neuroscience research, such as rhesus macaques (Semendeferi et al., 2002; Donahue et al., 2018; Barrett et al., 2020), and is particularly important given its central role in cognitive control and goal-directed behavior (Miller and Cohen, 2001; Szczepanski and Knight, 2014). Major progress has been made in understanding the relationship between the functional organization and the large-scale cortical anatomy of human LPFC. For example, previous findings support a hierarchical functional gradient organized along the rostral-caudal anatomical dimension of LPFC spanning several centimeters (Badre and D'Esposito, 2009; Nee and D'Esposito, 2016; Demirtas et al., 2019). Beyond this large-scale organization of human LPFC, it is largely unknown if more fine-grained structural-functional relationships exist. Thus, to begin to fill this gap in knowledge, we sought to answer the following question in the present study: Do individual differences in fine-grained morphological features of LPFC shed light on microstructural and functional properties of LPFC?

An important morphological feature of cortex is the patterning of the indentations, or sulci. Indeed, 60-70% of the cortex is buried in sulci and some sulci serve as landmarks that identify different cortical areas, especially in primary sensory cortices (Van Essen and Dierker, 2007; Zilles et al., 2013). In these cases, merely identifying a sulcus provides functional insight (Hinds et al., 2008). Despite this widely replicated relationship between sulcal morphology and functional representations in primary sensory cortices, much less is known regarding the
predictability between shallow, tertiary sulci and functional representations in association cortex, especially LPFC. A classic theory proposed by Sanides (1964) hypothesized that the late emergence and protracted development of tertiary sulci may co-occur with microstructural and functional features of association cortices, along with cognitive functions such as sustained attention and “active thinking” (Sanides, 1964) that also develop fully after adolescence (Fisher, 2019).

However, at least two factors have prevented the examination of tertiary sulci relative to anatomical and functional organization in human LPFC. First, tertiary sulci are presently excluded from nearly all published neuroanatomical atlases because classic anatomists could not discriminate tertiary sulci from indentations produced by veins and arteries on the outer surface of the cerebrum in post-mortem tissue, which is considered the gold standard of anatomical research (Weiner et al., 2018). Consequently, tertiary sulci within the posterior middle frontal gyrus (MFG) were either undefined in classic atlases or conflated with more anterior structures (Figure 1; (Miller et al., 2020a)). Second, the majority of human functional magnetic resonance imaging (MRI) studies of LPFC implement group analyses on average brain templates. As shown in Figure 1, averaging cortical surfaces together causes tertiary sulci in LPFC to disappear, especially within the posterior MFG.

Here, we implemented a multi-modal approach demonstrating that identifying individual sulci in LPFC reveals that the posterior middle frontal sulcus (pmfs) serves as a meso-scale link between microstructural (myelin content) and functional (network connectivity) properties of human LPFC in individual participants. Specifically, after manually labeling LPFC tertiary sulci
in 72 hemispheres based on a recently proposed labeling scheme (Petrides and Pandya, 2012; Petrides, 2019), we found that three components of the pmfs are dissociable based on myelin content, resting state functional connectivity profiles, and cognitive task activations. Moreover, the pmfs shows a distinct microstructural profile of myelin content across cortical depths from the surrounding MFG and distinct functional activations from the intermediate frontal sulcus (imfs). Together, these results not only provide important evidence that individual differences in LPFC sulcal patterning reflect meaningful differences in microstructural and functional properties, but also suggest that the pmfs serves as a bridge to Sanides’ classic hypothesis.
Materials and Methods

In the sections below, we describe the data used and the analysis methods implemented in three separate sections: 1) the general approach and a description of the multi-modal datasets that were used, 2) a detailed description of the methodology used for sulcal labeling within individual participants, and 3) the calculation of anatomical and functional metrics.

General approach

We sought to characterize sulcal morphology at the individual level in the LPFC of the human brain. To implement this process, we manually defined sulci following the most recent and comprehensive proposed labeling of sulci in the frontal lobe (Petrides and Pandya, 2012; Petrides, 2019). As in our prior work (Weiner et al., 2014; Weiner et al., 2018), all sulci were defined in native space cortical surfaces and individual hemispheres, which enables the most accurate definition of tertiary sulci within in vivo MRI data.

Multi-modal HCP dataset

We analyzed a subset of the multi-modal MRI data available for individual participants from the Human Connectome Project (HCP). We began with the first 5 numerically listed HCP participants and then randomly selected 31 additional human participants from the HCP for a total of 36 individuals (17 female, 19 male, age range 22-36 years).

Anatomical T1-weighted (T1w) MRI scans (0.7 mm voxel resolution) were obtained in native space from the HCP database, along with outputs from the FreeSurfer pipeline slightly modified by the HCP (Dale et al., 1999; Fischl et al., 1999a; Glasser et al., 2013). Maps of the ratio of T1-weighted and T2-weighted scans, which is a measure of tissue contrast enhancement related to
myelin content, were downloaded as part of the HCP ‘Structural Extended’ release. All additional anatomical metrics, which are detailed in the next section, were calculated on the full-resolution, native FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) meshes (Dale et al., 1999; Fischl et al., 1999a; Fischl et al., 1999b).

Anatomical labeling and metrics

Manual sulcal labeling

Guided by a recent comprehensive proposal for labeling sulci in LPFC (Petrides, 2019), each sulcus was manually defined within each individual hemisphere on the FreeSurfer inflated mesh with tksurfer. The curvature metric in FreeSurfer distinguished the boundaries between sulcal and gyral components, and manual lines were drawn to separate sulcal components based upon the proposal by Petrides and colleagues (Amiez and Petrides, 2007; Petrides and Pandya, 2012; Petrides, 2019; Germann and Petrides, 2020), as well as the appearance of sulci across the inflated, pial, and smoothwm surfaces. We maintained the number of components for all tertiary sulci (e.g., the three components of the posterior middle frontal sulcus - pmfs) based on the proposal by Petrides and colleagues to test if each of these sulcal components could be defined in a relatively large sample size (N=72) of in vivo hemispheres. The labels were generated using a two-tiered procedure. The labels were first defined manually by J.M. and W.V. and then finalized by a neuroanatomist (K.S.W.). All anatomical labels for a given hemisphere were fully defined before any morphological or functional analysis of the sulcal labels was performed. The superior, inferior, posterior, and anterior boundaries of our cortical expanse of interest were the following sulci, respectively: (1) the anterior and posterior components of the superior frontal sulcus, (2) the inferior frontal sulcus, (3) the central sulcus, and (4) the horizontal (imfs-h) and...
vertical \((imfs-v)\) intermediate frontal sulci. In each hemisphere, we first labeled the large primary sulci such as the central sulcus before labeling the secondary (e.g. \(sfs, ifs, imfs\)) sulci, and then we identified the tertiary sulcal components of the \(pmfs\). Primary, secondary, and tertiary labels refer to the time in which the sulci emerge in gestation (Sanides, 1964; Chi et al., 1977; Welker, 1990; Armstrong et al., 1995). An example hemisphere with every sulcus labeled within these boundaries is shown in Figure 2a, and the \(pmfs\) sulcal components are plotted on each hemisphere in Extended Data Figure 2-1.

Quantification of sulcal depth and surface area

Sulcal depth was calculated from the native meshes generated by the FreeSurfer HCP pipeline. Raw values for sulcal depth (mm) were calculated from the sulcal fundus to the smoothed outer pial surface using a custom-modified version of a recently developed algorithm for robust morphological statistics building on the FreeSurfer pipeline (Madan, 2019). Surface area (mm\(^2\)) was generated for each sulcus through the \texttt{mris_anatomical_stats} function in FreeSurfer (Dale et al., 1999; Fischl et al., 1999a). We focused on sulcal depth as it is the main measurement that is used to discriminate tertiary sulci from primary and secondary sulci. Specifically, primary sulci are deepest, while tertiary sulci are shallowest, and secondary sulci are in between (Sanides, 1964; Chi et al., 1977; Welker, 1990; Armstrong et al., 1995). We also included surface area as tertiary sulci typically also have a reduced surface area compared to primary and secondary sulci.

Calculating \(T_1w/T_2w\) myelin index along an anterior-posterior dimension in LPFC

In order to test if there is a relationship between any of our sulci of interest and myelin content, we used an \textit{in vivo} proxy of myelination: the \(T_1w/T_2w\) maps for each individual hemisphere.
Sampling T1w/T2w myelin index across cortical depths

In order to investigate the microstructural profile of the pmfs across cortical layers, we generated nine surfaces from the outermost (pial) to the innermost (white matter) layers in all of the manually labeled hemispheres using an equivolumetric approach (Waehnert et al., 2014). We implemented the equivolume surface algorithm spanning nine cortical depths with the surfacetoools Python package that builds on top of FreeSurfer (Dale et al., 1999) outputs: https://github.com/kwagstyl/surface_tools. The high-resolution T1w/T2w volumetric data in each
HCP participant’s native anatomical space were then sampled onto each equivolume surface using the FreeSurfer mri_vol2surf function to obtain a value of T_1/T_2 at each cortical depth. The stability of depth profiles of T_1/T_2 values extracted from individual regions was shown to be highest in the same HCP dataset when using a solution of 14 equivolume surfaces, with stability plateauling when using nine or more equivolume surfaces (Paquola et al., 2019). We compared the mean T_1/T_2 value across depths for each participant in the manually defined pmfs components and the surrounding middle frontal gyrus (as defined by FreeSurfer parcellations (Destrieux et al., 2010), but with the pmfs components removed). We then conducted a repeated-measures ANOVA followed by post-hoc t-tests at each depth to test for differences in myelin content between the pmfs components and the MFG (Figure 5). Tests across each of the nine cortical depths were corrected for multiple comparisons at a familywise error (FWE) threshold of $p = 0.05/9$.

Cross-validation of sulcal location

In order to quantify the ability to predict the location of each sulcus across participants, we registered all sulcal labels to a common template surface (fsaverage) using cortex-based alignment (Fischl et al., 1999b). Similarity between each transformed individual label and the labels defined on fsaverage was calculated via the DICE coefficient, where X and Y are each label:

$$DICE(X, Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

The cortex-based alignment algorithm aligns the surfaces based on sulcal depth and curvature metrics. We use the central sulcus as a proxy noise ceiling measurement for DICE coefficient.
values from other frontal sulci because it is a large and deep sulcus and is used in the surface registration algorithm that aligns cortical surfaces across participants (Fischl et al., 1999b).

Sulcal probability maps were calculated to describe the vertices with the highest alignment across participants for a given sulcus. A map was generated for each sulcus by calculating, at each vertex in the *fsaverage* hemisphere, the number of participants with that vertex labeled as the given sulcus, divided by the total number of participants. In order to avoid overlap among sulci, we then constrained the probability maps into maximum probability maps (MPMs) by only including vertices where (1) greater than 33% of participants included the given sulcal label and (2) the sulcus with the highest value of participant overlap was assigned to a given vertex. In a leave-one-participant out cross-validation procedure, we generated probability maps from *n* = 35 participants and registered the probability map to the held-out participant’s native cortical surface. This provided a measure of sulcal variability and prediction accuracy ([Figure 8](#)). This procedure also allows the identification of the *pmfs* sulcal components within held-out individual participants, reducing the extent of manual labeling necessary to identify this structure in future studies. Finally, the MPMs were used when analyzing meta-analytical functional data (described in the section *Cognitive Component Modeling*) and whole brain population receptive field data ([Figure 7](#)). The MPMs and code for alignment to new participants will be available on OSF with the publication of this paper.

Functional metrics

Resting-state network connectivity fingerprints

In order to test if the three *pmfs* sulcal components were functionally distinct from one another, we calculated and compared functional connectivity network fingerprints for each sulcus.
Resting-state network parcellations for each individual participant were used from Kong et al. (2018), who generated individual network definitions by applying a hierarchical Bayesian network algorithm to produce maps for each of 17-networks (Yeo et al., 2011) in individual HCP participants. These data were calculated in the template HCP fs_LR 32k space. We resampled the network profiles for each participant onto the fsaverage cortical surface and, then, to each native surface using CBIG tools (https://github.com/ThomasYeoLab/CBIG). We then calculated the overlap of each pmfs sulcus in each participant with each of the 17 resting-state networks. We also separated the components of the pmfs and tested whether they showed similar or different network connectivity fingerprints using a 3-way repeated-measures ANOVA (sulcal component x network x hemisphere). Variability across individuals in the network profiles for each pmfs component was calculated by generating the Wasserstein metric (Earth Mover’s Distance) between the resting-state network overlap values for each unique pair of participants (Figure 5b).

Cognitive component modeling

To further examine if the pmfs-p, pmfs-i, and pmfs-a are functionally distinct, we quantified the overlap between the maximum probability maps (MPMs) of each sulcal component and meta-analytic fMRI data from hundreds of experiments aligned to the fsaverage surface. Specifically, we quantitatively related the sulcal MPMs to vertex-wise maps for 14 cognitive components, which quantify how each vertex is recruited in a given set of cognitive operations across tasks and experiments (Yeo et al., 2015). We used a Bayesian method of expectation maximization to determine the combination of cognitive components that best fit each sulcal MPM. This resulted in a set of probabilities for each cognitive component for each sulcal map. We tested whether all
sulci and the three components of the pmfs were distinguishable based upon these cognitive component loadings from a repeated-measures ANOVA (Figure 6).

Retinotopic response mapping

To determine if there was any correspondence between the manually labeled LPFC sulci and retinotopic representations, we analyzed a recent population receptive field mapping dataset (Benson et al., 2018). As these data were only available in a template (fsaverage) space, we used the predicted sulcal locations from probabilistic maps (as used in the cognitive components analysis) for these analyses (Figure 7). For each sulcus, we extracted the mean R^2 value (the percentage of variance in each vertex explained by the population receptive field model) across participants for vertices that showed meaningful retinotopic responses (thresholded at $R^2 > 10\%$, as in (Mackey et al., 2017)).

Statistical methods

All repeated measures ANOVAs (including sphericity correction) and post-hoc t-tests were performed with the afex and emmeans R packages, imported into Python via rpy2. For each repeated measures ANOVA, cortical hemisphere and sulcus were used as within-subject factors. Effect sizes for each main effect and interaction were calculated and reported with the generalized eta-squared metric (Fritz et al., 2012). Mixed linear models were implemented in the lme4 R package. Cortical surface files were loaded in and operated on in Python using the nilearn software: https://nilearn.github.io
Results

Before conducting our multimodal examination relating morphological features of tertiary sulci to microstructural and functional properties of LPFC, we first had to confront the contradictory nature of historic and modern definitions of sulci within the middle frontal gyrus (MFG). For example, sulcal definitions within the MFG vary in a) their nomenclature, b) the number of sulcal components depicted or acknowledged in schematics, c) the omission or inclusion of sulci within the posterior MFG, and d) the actual empirical data that is included to support the illustration of the sulcal patterning (Figure 1). To ameliorate these concerns and to either empirically support or to refute the generality of sulcal definitions within the posterior MFG, we apply a classic, multimodal approach that has been used to distinguish cortical areas from one another in order to determine sulcal definitions in the posterior MFG. Specifically, after identifying each sulcus within the posterior MFG based on recent proposals (Petrides and Pandya, 2012; Petrides, 2019), we use both anatomical and fMRI data to either support or refute the identification of individual sulci within this cortical expanse. Implementing this two-pronged approach, we first examined if the three components of the posterior middle frontal sulcus (pmfs) are consistently identifiable within individual hemispheres. And if so, we then tested if the three pmfs components are anatomically and functionally homogenous, or serve to identify anatomical and functional heterogeneity in LPFC. This approach supports the latter in which there are three anatomically and functionally distinct sulci within the posterior MFG: the posterior (pmfs-p), intermediate (pmfs-i), and anterior (pmfs-a) posterior middle frontal sulci.
Three posterior middle frontal sulci (pmfs) are identifiable within individuals and are characteristically shallow.

Before examining the sulcal patterning within the posterior MFG, we first identified reliable sulci (Materials and Methods: manual sulcal labeling) surrounding the MFG in both in vivo cortical surface reconstructions of MRI data and post-mortem brains (Figure 2a). Posteriorly, we identified the central sulcus (cs), as well as the superior (sprs) and inferior (iprs) pre-central sulci. Superiorly, we identified the anterior (sfs-a) and posterior (sfs-p) superior frontal sulci. Inferiorly, we identified the inferior frontal sulcus (ifs). Anteriorly, we identified the horizontal (imfs-h) and vertical (imfs-v) intermediate frontal sulci. The latter two sulci are consistent with Eberstaller’s classic definition of the middle frontal sulcus, but have since been renamed (Figure 1; (Miller et al., 2020a)). Within the posterior MFG, we identified three sulci in every hemisphere (N=72). From posterior to anterior, the first sulcus (pmfs-p) is positioned immediately anterior to the sprs (Figure 2a, Extended Data Figure 2-1), and most commonly does not intersect other sulci (see Table 1 for a summary of the morphological patterns, or types). The second sulcus (pmfs-i) is located immediately anterior to the pmfs-p, and typically aligns with the separation between the sfs-a and sfs-p components. The pmfs-i is most often independent (especially in the right hemisphere) or intersects (especially in the left hemisphere) the pmfs-a. Finally, the third sulcus (pmfs-a) is immediately anterior to the pmfs-i, inferior to the sfs-a, and posterior to the imfs-h. The pmfs-a most commonly intersects other sulci in the right hemisphere.
Each sulcus is also identifiable within individual \textit{in vivo} volumetric slices (Petrides, 2019) and in postmortem brains (Figure 2), which indicates that the computational process used to generate the cortical surface reconstruction in the MRI data does not artificially create these sulci within the MFG. Our results show that the pmfs is distinguishable from the imfs, which is in correspondence with the recent atlas from Petrides (2019), whereas the pmfs and imfs were often combined in classic sulcal atlases (Ono et al., 1990).

The two most identifying morphological features of the three pmfs sulci are their surface area and depth (Figure 2b). Each pmfs sulcus is of roughly equal surface area (Figure 2b, Table 2), which is smaller than the surface area of the other examined sulci in LPFC (Figure 2b, Table 2). A two-way repeated-measures ANOVA with factors sulcus and hemisphere yielded a main effect of sulcus \((F(5.78, 202.15) = 384.1, p < 0.001, \eta^2_p = 0.84)\) and no main effect of hemisphere \((F(1, 35) = 0.1, p = 0.77)\). The depth of the three pmfs sulci are also the shallowest of the lateral PFC sulci examined (Figure 2b, Table 1). A two-way repeated-measures ANOVA with sulcus and hemisphere as factors yielded a main effect of sulcus \((F(3.15, 103.84) = 77.7, p < 0.001, \eta^2_p = 0.55)\), and a main effect of hemisphere \((F(1, 33) = 20.4, p < 0.001, \eta^2_p = 0.02)\) in which sulci were deeper in the right compared to the left hemisphere (Figure 2b, Table 2). Post-hoc tests show that, across hemispheres, the pmfs-p is shallower than all other sulci \((p\text{-values} < 0.001, \text{Tukey’s adjustment})\), and the pmfs-i and pmfs-a are shallower than all other sulci except for the imfs-v. Taken together, three pmfs sulci are identifiable in individual hemispheres (Figure 2, Extended Data Figure 2-1) and distinguish themselves from other LPFC sulci based on their surface area and shallowness.

[INSERT TABLE 2 HERE]
The pmfs-p, pmfs-i, and pmfs-a are anatomically dissociable and reflect a larger rostro-caudal myelination gradient in LPFC

While the pmfs-p, pmfs-i, and pmfs-a are morphologically distinct from surrounding sulci (Figure 2), it is presently unknown if they are anatomically and functionally similar or distinct from one another. To test this, we first extracted and compared average MRI T1w/T2w ratio values from each sulcus. The T1w/T2w ratio is a tissue contrast enhancement index that is correlated with myelin content (Figure 3a; (Glasser and Van Essen, 2011; Shams et al., 2019)). We chose this index because myeloarchitecture is a classic criterion used to separate cortical areas from one another (Vogt and Vogt, 1919; Flechsig, 1920; Hopf, 1956; Dick et al., 2012). A two-way repeated-measures ANOVA with sulcus and hemisphere as factors yielded a main effect of sulcus ($F(1.76, 61.7) = 85.0, p < 0.001, \eta^2_p = 0.39$) and a main effect of hemisphere ($F(1, 35) = 10.5, p = 0.003, \eta^2_p = 0.05$) on myelin content, but no sulcus x hemisphere interaction ($F(1.73, 60.5) = 2.5, p = 0.10$). The differences in myelin across sulci were driven by the finding that T1w/T2w decreased from posterior to anterior across hemispheres: pmfs-p vs. pmfs-i, $t(70) = 9.75, p < 0.001$ (Tukey’s post-hoc), pmfs-i vs. pmfs-a, $t(70) = 2.62, p = 0.029$, and pmfs-p vs. pmfs-a, $t(70) = 12.37, p < 0.001$. The right hemisphere also had higher myelin content overall in the pmfs, $t(35) = 3.25, p = 0.003$. Accordingly, the three sulcal components are differentiable based on myelin content in both hemispheres (Figure 3b).

The rostro-caudal gradient among the pmfs-p, pmfs-i, and pmfs-a sulci is embedded within a larger rostro-caudal myelination gradient in lateral PFC. Specifically, modeling T1w/T2w content across frontal sulci as a function of distance from the central sulcus (Figure 3c)
using a mixed linear model revealed a significant, negative effect of distance from the central sulcus along the rostral-caudal axis ($\beta = -0.001$, $z = -33.8$, $p < 0.001$), with no differences between hemispheres ($\beta = -0.003$, $z = -0.8$, $p = 0.4$). Together, our quantifications show that the pmfs-p, pmfs-i, and pmfs-a are embedded within a larger anatomical and functional hierarchical gradient in LPFC (see Discussion for further details).
The pmfs components show a microstructural profile across cortical layers that is distinct from the middle frontal gyrus (MFG).

Classic and modern findings show that there is generally more intracortical myelin in deeper cortical layers and that the depths of sulci often have less myelinated fibers than gyral crowns (Braitenberg, 1962; Sanides, 1972; Welker, 1990; Annese et al., 2004; Rowley et al., 2015). Building on this work, we sought to calculate microstructural profiles for myelin content across cortical depths for each pmfs component, as well as the gyral components of the MFG that surround them (Figure 4; Materials and Methods). To do so, we implemented equivolume algorithms to construct cortical surfaces within the gray matter. The depth profiles from equivolume surfaces have been used to investigate cortical laminar organization in vivo and correspond with those obtained from both ex vivo MRI data and post-mortem histological sections (Waehnert et al., 2014; Paquola et al., 2019).

The MFG and pmfs components show distinct microstructural profiles of myelin content across cortical depths. A three-way repeated-measures ANOVA with factors of structure (pmfs-p, pmfs-i, pmfs-a, MFG), cortical depth (0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%), and hemisphere (left, right), yields main effects of structure ($F(2.26, 78.94) = 15.6, p < 0.001, \eta^2_p = 0.007$), depth ($F(1.39, 48.49) = 1849.6, p < 0.001, \eta^2_p = 0.84$), and a structure x depth interaction ($F(6.78, 237.43) = 78.5, p < 0.001, \eta^2_p = 0.02$). This interaction between structure and depth did not differ by hemisphere ($F(4.69, 164.26) = 1.13, p = 0.35, \eta^2_p = 0.02$), so subsequent analyses are collapsed across hemispheres. To determine which differences drive the distinct profiles in myelin content across cortical layers between the pmfs and MFG, we conducted post-hoc tests at each cortical depth (Figure 4a). The MFG had higher myelin content in each of the upper cortical depths (0%, 12.5%, 25%, 37.5%).
compared to all of the pmfs components (all p-values < 0.001, FWE-corrected at $\alpha = 0.05/9$ for the 9 cortical depths). In the middle-to-deep layers (50%, 62.5%), the pmfs-p had higher myelin content than either the pmfs-i (50%: $t(105) = 6.4, p < 0.001$; 62.5%: $t(105) = 7.0, p < 0.001$) or pmfs-a (50%: $t(105) = 7.1, p < 0.001$; 62.5%: $t(105) = 8.1, p < 0.001$), and was even higher than the MFG (50%: $t(105) = 0.27, p = 0.99$; 62.5%: $t(105) = 3.7, p = 0.002$). At the deepest cortical layers, closest to the gray/white matter boundary, all three pmfs components showed increased myelin relative to the MFG. Specifically, the pmfs-a showed the highest myelin content in the deepest layers, but all three pmfs components displayed higher myelin than the MFG (all p-values < 0.001, FWE-corrected at $\alpha = 0.05/9$ for the 9 cortical depths). The profile of myelin content across cortical depths in the pmfs and MFG is also robust when comparing myelin content at a coarser (3 instead of 9) level of upper, middle, and lower depths (mean of depths within each bin): structure x depth interaction ($F(3.87, 135.4) = 127.4, p < 0.001, \eta^2_p = 0.02$).

Altogether, the pmfs differed from the MFG in microstructure across cortical layers, with lower myelin content in upper layers and higher myelin content in deeper layers. This surface-based sampling of cortical depths provides in vivo neuroimaging evidence for a microanatomical distinction of the pmfs from the surrounding MFG. Further, the depth profiles of T_1w/T_2w values within the MFG are similar to classic myeloarchitectural quantifications of the MFG (Figure 4).
The pmfs-p, pmfs-i, and pmfs-a exhibit different characteristic patterns of whole brain functional connectivity.

To determine if the pmfs-p, pmfs-i, and pmfs-a are functionally distinct, we leveraged detailed individual functional parcellations of the entire cerebral cortex based on functional connectivity from a recently published study (Kong et al., 2018; Figure 5a). Importantly, this parcellation was conducted blind to both cortical folding and our sulcal definitions. Within each hemisphere in the same participants in which we generated manual sulcal labels, we generated a functional connectivity network profile (which we refer to as a “connectivity fingerprint”). For each sulcal component, we calculated the overlap between 17 functional networks (on the native hemisphere, based on the DICE coefficient; Materials and Methods). This technique generated a cortical topography reflective of the whole-brain connectivity patterns for each sulcal component (Figure 5a, bottom), and can be interpreted similarly to other studies of functional network variations (Gordon et al., 2017; Seitzman et al., 2019), as a trait-like connectivity profile for each pmfs component within each participant.

Our approach demonstrated that the pmfs-p, pmfs-i, and pmfs-a have different connectivity fingerprints and thus, are functionally dissociable. Average connectivity fingerprints across participants are illustrated in Figure 5b. A repeated-measures ANOVA with sulcal component (pmfs-p, pmfs-i, pmfs-a), hemisphere (left, right), and network yielded a significant component x network interaction ($F(32, 1120) = 45.2, p < 0.001, \eta^2_p = 0.29$), as well as a component x network x hemisphere interaction ($F(32, 1120) = 5.26, p < 0.001, \eta^2_p = 0.040$) (Figure 5b). In each hemisphere, there is a component x network interaction (left: $F(32, 1120) = 29.4, p < 0.001, \eta^2_p = 0.35$, right:
In which the difference between hemispheres is driven by the pmfs-p connectivity fingerprint. Specifically, the pmfs-p overlaps most with the default mode network in the left hemisphere and the cognitive control network in the right hemisphere.

Additionally, there are also individual and hemispheric differences in the connectivity fingerprint of each pmfs component at the level of individual participants (Figure 5c; Extended Data Figure 5-1). To characterize individual differences, we built on work showing network connectivity variations across individuals (Kong et al., 2018; Seitzman et al., 2019) by relating this connectivity variability to individual anatomical landmarks in LPFC. We quantified connectivity fingerprint variability by measuring the pairwise Wasserstein distance between the connectivity profiles for all unique participant pairs for each sulcal component, in which a larger distance indicates decreased similarity, and therefore greater variability (see Materials and Methods). This approach quantifies how variable the pattern of network overlap (connectivity fingerprint) is across individuals for each pmfs component (Figure 5c, right). In the right hemisphere, the pmfs-p showed the most variable network profile across all unique participant pairs (pmfs-p vs. pmfs-i, Wilcoxon-Signed rank test, $W = 7.2 \times 10^4$, $p < 0.001$, pmfs-p vs. pmfs-a, $W = 7.4 \times 10^4$, $p < 0.001$), while the pmfs-i was most variable in the left hemisphere (pmfs-i vs. pmfs-a, $W = 8.8 \times 10^4$, $p = 0.014$, pmfs-i vs. pmfs-p, $W = 8.0 \times 10^4$, $p < 0.001$). This analysis suggests that the right pmfs-p and left pmfs-i mark regions of LPFC with particularly high levels of individual differences in functional connectivity profiles, providing an anatomical substrate for network connectivity differences across individuals.
The pmfs-p, pmfs-i, and pmfs-a are functionally dissociable: Meta-analyses across 83 experimental task categories

We next tested if the dissociation of functional networks between the pmfs-p, pmfs-i, and pmfs-a identified in individual participants (Figure 5) can also be observed in meta-analytic analyses of functional activation data at the group-level. That is, do the components of the pmfs show a functional dissociation of engagement over a wide array of cognitive operations? To test for different patterns of functional activations across tasks, we generated sulcal probability maps on a template cortical surface (Figure 6a, bottom left). Analogous to probabilistic maps for functional regions (Wang et al., 2015; Weiner et al., 2017; Weiner et al., 2018), the maps provide a vertex-wise measure of anatomical overlap across individuals for all 13 LPFC sulci examined in the present study. As the pmfs components disappear on average templates (Figure 1), these probabilistic maps are independent of the sulcal patterning of the template itself, which merely serves as a cortical surface independent of each individual cortical surface. We then compared these sulcal probability maps to 14 probabilistic “cognitive component” maps derived from an author-topic model of meta-analytic activation data across 83 experimental task categories (Yeo et al., 2015).

The cognitive component model links patterns of brain activity to behavioral tasks via latent components representing putative functional subsystems (Yeo et al., 2015). Each cognitive component map (which was calculated on the same template cortical surface used here) provides the probability that a given voxel will be activated by each of the 14 components (across all 83
We then used an expectation maximization algorithm (via posterior probability, Materials and Methods) to relate brain activity in each sulcal probability map to each cognitive component (Figure 6a, right). Importantly, when calculating the posterior probabilities, we implemented a leave-one-participant-out cross-validation procedure when constructing the sulcal probability maps in order to assess variability in the generated posterior probabilities for each cognitive component (Figure 6b). To indicate feasibility of this approach, the somato-motor components of the cognitive component map (C01, C02) align most highly with the central sulcus as one would expect, which shows the ability of this method to measure structural-functional correspondences at the meta-analytic level.

This approach further reveals that the pmfs-p, pmfs-i, and pmfs-a are functionally dissociable based on meta-analytic data of cognitive task activations. In the right hemisphere, the pmfs-p, pmfs-i, and pmfs-a showed distinct probabilities for separate cognitive components: 1) the pmfs-p loaded onto a default mode component (C11), 2) the pmfs-i loaded onto an executive function component (C10), and 3) the pmfs-a loaded onto an inhibitory control component (C09). In the left hemisphere, the pmfs-a and pmfs-i both loaded onto an executive function (C10) component, while the pmfs-p loaded onto an emotional processing/episodic memory component (C12). The pmfs was also dissociable in activation profiles from the more anterior imfs. In the left hemisphere, the imfs showed no overlap with the pmfs, with the imfs-h loading onto the inhibitory control component (C09), and the imfs-v loading onto a default mode component (C11). In the right hemisphere, both the imfs-h and imfs-v loaded onto the same inhibitory control component (C09) as the pmfs-a.

Like our individual participant analyses, there were also hemispheric differences: the cognitive components overlapping the most with the pmfs-a and pmfs-p differed between the two
hemispheres. The pmfs-p loaded onto an emotional processing/episodic memory component in the left hemisphere (Figure 6b, top row) and a default mode component in the right hemisphere (Figure 6b, top row), while the pmfs-a loaded onto an executive function component in the left hemisphere (Figure 6b, third row) and an inhibitory control component in the right hemisphere (Figure 6b, third row).

Finally, previous studies have identified retinotopic representations in human LPFC (Hagler and Sereno, 2006; Kastner et al., 2007; Mackey et al., 2017), but the three pmfs components did not overlap with cognitive components associated with visual processing in these meta-analytic analyses. To further examine the relationship between the pmfs components and visual processing, we analyzed whether the pmfs components explained a significant amount of variance (Figure 7) in a newly published, whole brain dataset of population receptive field measurements in 181 participants (Benson et al., 2018). When considering voxels that demonstrate retinotopic responses ($R^2 > 15\%$), the highest overlap between predicted pmfs location and retinotopic representations was specific to the right hemisphere for the pmfs-i (mean R^2 across participants = 28.5%), with less overlap in the left hemisphere (all other pmfs R^2 values < 20%). The most consistent correspondence between visual field maps and sulcal location occurred at (1) the intersection of the sprs and sfs-p, and (2) the intersection of the ipsrs and ifs, as previously reported ((Mackey et al., 2017); Figure 7). The ipsrs showed the highest retinotopic responses of the LPFC sulci (lh: 34.2%; rh: 48.9%) measured here, and this is also consistent with a recent study identifying a region critical for conditional eye movements within a similar location in the ifs (Germann and Petrides, 2020). Future studies examining the relationship between pmfs components and retinotopic representations in individual participants will further expand on these findings.
Extensive individual differences in the location of the pmfs across individuals

Although the three pmfs components are prominent within each hemisphere, there is extensive individual variability in the precise location of each sulcal component within the posterior MFG. To determine how well the probability maps could predict the location of the pmfs-p, pmfs-i, and pmfs-a within individual hemispheres, we used a cross-validated approach, iteratively leaving out one participant from the calculation of probability maps (Figure 8a). Then, the maximum probability maps (MPMs) were projected to the held-out individual’s native cortical surface to calculate the overlap between the manually identified and probabilistically identified sulcal locations. This procedure resulted in a measure of location variability for each sulcal component (Figure 8b). For these calculations, we used the central sulcus (cs) as a noise ceiling (left: cs = 0.85 ± 0.02; right: cs = 0.85 ± 0.06) as it is a) considered very stable across individuals (see Materials and Methods) and b) used in the cortex-based alignment procedure (Fischl et al., 1999b).

The pmfs components exhibited significant variability in sulcal location across participants (left: pmfs-p = 0.30 ± 0.28, pmfs-i = 0.32 ± 0.18, pmfs-a = 0.27 ± 0.20; right: pmfs-p = 0.03 ± 0.04, pmfs-i = 0.37 ± 0.18, pmfs-a = 0.20 ± 0.20). A 2-way repeated-measures ANOVA with pmfs sulcal component (pmfs-p, pmfs-i, pmfs-a) and hemisphere (right, left) revealed a sulcus x hemisphere interaction ($F(1.84, 64.47) = 9.52, p < 0.001, \eta^2_p = 0.08$) driven by the finding that the pmfs-p is highly variable across individuals, resulting in very little predictability in the right hemisphere (Figure 8b). When using all three pmfs components together, prediction is more robust (left: pmfs = 0.41 ± 0.13; right: pmfs = 0.37 ±
0.15), but still much lower than the predictability of the cs and also lower than prediction performance for all other LPFC sulci quantified in the present study (Figure 8b). These results demonstrate that although the pmfs is prominent within each individual (Extended Data Figure 2-1), the location of each pmfs component is variable across individuals, which provides empirical support for the historical confusion regarding its identification and labeling (Figure 1).
Discussion

Here, we examined the relationship between cortical anatomy and function in human lateral prefrontal cortex (LPFC) and showed for the first time (to our knowledge) that the posterior middle frontal sulcus (pmfs) serves as a meso-scale link between myelin content and functional connectivity in individual participants. The pmfs is a characteristically shallow tertiary sulcus with three components that differ in their myelin content, resting state connectivity profiles, and engagement across meta-analyses of 83 cognitive tasks. We first discuss how these findings suggest modern empirical support for a classic, yet largely unconsidered, anatomical theory (Sanides, 1962, 1964), as well as a recent cognitive neuroscience theory proposing a functional hierarchy in LPFC (Koechlin and Summerfield, 2007; Badre and D'Esposito, 2009; Badre and Nee, 2018). We end by discussing a growing need for computational tools that automatically define tertiary sulci throughout cortex.

The anatomical-functional coupling in LPFC identified here is quite surprising considering the widespread literature providing little support for fine-grained anatomical-functional coupling in this cortical expanse and in association cortices more broadly when conducting traditional group-analyses (Paquola et al., 2019; Vazquez-Rodriguez et al., 2019). Indeed, cortical folding patterns relative to the location of anatomical, functional, or multimodal transitions are considered “imperfectly correlated” (Welker, 1990; Glasser et al., 2016) in association cortices and especially in LPFC (Van Essen et al., 2012; Caspers et al., 2013; Robinson et al., 2014; Coalson et al., 2018). Contrary to these previous findings that did not consider tertiary sulci, the present findings appear to support a classic, yet largely unconsidered theory proposed by Sanides (1962, 1964) that tertiary sulci are potentially meaningful anatomical and functional landmarks in association cortices – and in particular, in LPFC. Specifically,
Sanides proposed that because tertiary sulci emerge late in gestation and exhibit a protracted postnatal development, they likely serve as functional and architectonic landmarks in human association cortices, which also exhibit a protracted postnatal development. Sanides (1964) further proposed that the late morphological development of tertiary sulci is likely related to protracted cognitive skills associated with LPFC. Interestingly, identifying pmfs components in his classic images shows myeloarchitectonic gradations among five areas in LPFC (Figure 9a). Linking these data to recent modern parcellations of the human cerebral cortex (Sallet et al., 2013; Glasser et al., 2016) shows that pmfs components likely serve as boundaries among a series of cortical areas, which can be addressed in future research in individual participants (Figure 9b).

In addition to supporting Sanides’ classic anatomical theory, the present data demonstrated that the three pmfs components exhibit different resting-state connectivity profiles along a rostral-caudal axis, which builds on previous work also supporting a functional hierarchy along a rostral-caudal axis of LPFC. Further consistent with this hierarchy, evidence from neuroimaging, lesion, and electrocorticography studies indicate that this proposed rostral-caudal axis of LPFC is also related to levels of temporal and cognitive abstraction. That is, more anterior LPFC cortical regions are more highly engaged in tasks with higher abstract complexity (Koechlin et al., 2003; Koechlin and Summerfield, 2007; Voytek et al., 2015; Mansouri et al., 2017). While there is axonal tracing data in non-human primates suggesting an anatomical basis for such a hierarchical organization (Goulas et al., 2014; Goulas et al., 2019), the present findings provide new evidence for anatomically and functionally dissociable sulcal components in LPFC that also support a hierarchical organization within individuals. Future work leveraging
finer-scale multimodal and microanatomical data from individual human brains will be critical for uncovering anatomical and functional properties of LPFC across spatial and temporal scales that may further support the proposed functional rostral-caudal hierarchy of human LPFC.

Together, the culmination of present and previous findings suggest that tertiary sulci are landmarks in human ventral temporal cortex (Nasr et al., 2011; Caspers et al., 2013; Weiner et al., 2014; Lorenz et al., 2017), medial PFC (Amiez et al., 2019; Lopez-Persem et al., 2019), and now, LPFC. This begs the question: How many other tertiary sulci serve as cortical landmarks? We stress that it is unlikely that all tertiary sulci will serve as cortical landmarks, since neuroanatomists have known for over a century that not all sulci function as cortical landmarks (Smith, 1907; Bailey and Bonin, 1951; Ono et al., 1990; Welker, 1990; Van Essen et al., 2019). Nonetheless, this does not preclude the importance of future studies identifying which tertiary sulci are architectonic, functional, behavioral, or multimodal landmarks – not only in healthy young adults as examined here, but also in developmental (Voorhies et al., 2020) and clinical (Garrison et al., 2015; Brun et al., 2016) cohorts. Additionally, tertiary sulci can also serve as evolutionary markers for primate cortical homology. For example, shallow “dimples” co-occur with the frontal eye field (FEF) in macaques, while deeper sulci co-occur with the proposed homologue of the FEF in humans (Amiez and Petrides, 2009; Schall et al., 2020). Humans may also have tertiary sulci in locations that non-human primates do not have dimples as was recently shown in medial PFC (Amiez et al., 2019).

Carefully examining the relationship among tertiary sulci and multiple types of anatomical, functional, and behavioral data in individual participants will require new neuroimaging tools to automatically identify tertiary sulci throughout human cortex. For instance, most neuroimaging software packages are only capable of automatically defining ~30-
35 primary and secondary sulci in a given hemisphere (Destrieux et al., 2010). Current estimates approximate ~110 sulci in each hemisphere when considering tertiary sulci (Petrides, 2019). Thus, studies in the immediate future will still require the manual identification of tertiary sulci, which is labor intensive and requires expertise ((Miller et al., 2020a) for a historical discussion regarding the manual labeling of tertiary sulci in LPFC). For example, the present study required manual definitions of 936 sulci in 72 hemispheres. While 72 is a large sample size compared to other labor-intensive anatomical studies in which 20 hemispheres is considered sufficient to encapsulate individual differences (Amunts and Zilles, 2015; Amunts et al., 2020), 2400 hemispheres are available just from the HCP alone. Defining tertiary sulci in only the LPFC of every HCP participant would require ~26,400 manual definitions, while defining all tertiary sulci in the entire HCP dataset would require over a quarter of a million (~256,800) manual definitions. Consequently, manual identification of tertiary sulci will continue to limit sample sizes in immediate future studies until new automated methods are generated (Klein et al., 2017; Hao et al., 2020; Lyu et al., 2020).

In the interim, we sought to leverage the anatomical labeling in this study to aid the field in the identification of sulcal landmarks in LPFC. The probability maps of sulcal locations in the present study are openly available and may be transformed to held-out individual brains (Figure 9). Accordingly, manual identification of these landmarks within individuals is greatly aided, allowing future studies to apply these tools to identify LPFC tertiary in individual participants, including those from various groups such as patient or developmental cohorts. Because smaller tertiary sulci in association cortex are the latest sulcal indentations to develop (Sanides, 1962, 1964; Chi et al., 1977; Welker, 1990; Armstrong et al., 1995), their anatomical trajectories and properties likely relate to the development of cognitive abilities associated with the LPFC and
other association areas as Sanides hypothesized, which recent ongoing work supports (Voorhies et al., 2020). Moving forward, we hope to leverage the manual labeling performed here to develop better automated algorithms for sulcal labeling within individuals. Future work using deep learning algorithms may help to identify tertiary structures in novel brains without manual labeling or intervention (Borne et al., 2020; Hao et al., 2020; Lyu et al., 2020). Such automated tools have translational applications as tertiary sulci are largely hominoid-specific structures (Amiez et al., 2019; Miller et al., 2020b) located in association cortices associated with pathology in many neurological disorders. Thus, morphological features of these under-studied neuroanatomical structures may be useful clinical biomarkers for future diagnostic purposes. To begin to achieve this goal and to aid the field, we share our probabilistic maps of LPFC tertiary sulci with the publication of this paper.
Data availability

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. The HCP dataset and processing are described in previous publications (Glasser et al., 2013; Glasser et al., 2016). The probability maps for LPFC sulcal definitions and analysis code will be freely available with the publication of the paper on Open Science Framework (OSF).

Author Contributions

Acknowledgments

This work was supported by (1) start-up funds provided by the University of California, Berkeley and the Helen Wills Neuroscience Institute (K.S.W.); (2) NIH grant RO1 MH63901 (J.A.M., M.D.). We also thank Jewelia Yao for help with the manual definition of LPFC sulci.
References

Amiez C, Petrides M (2007) Selective involvement of the mid-dorsolateral prefrontal cortex in
the coding of the serial order of visual stimuli in working memory. Proc Natl Acad Sci U
S A 104:13786-13791.

Amiez C, Petrides M (2009) Anatomical organization of the eye fields in the human and non-

CRE, Procyk E, Petrides M (2019) Sulcal organization in the medial frontal cortex

Neuron 88:1086-1107.

Neurosci 10:659-669.

Sci 22:170-188.

Barrett RLC, Dawson M, Dyrby TB, Krug K, Pütto M, D’Arceuil H, Croxson PL, Johnson PJ,
Howells H, Forkel SJ, Dell’Acqua F, Catani M (2020) Differences in Frontal Network

Benson NC, Jamison KW, Arcaro MJ, Vu AT, Glasser MF, Coalson TS, Van Essen DC, Yacoub
retinotopy dataset: Description and population receptive field analysis. J Vis 18:23.

patch- or CNN-based segmentation techniques combined with bottom-up geometric

Brun L, Auzias G, Viellard M, Villeneuve N, Girard N, Poinso F, Da Fonseca D, Deruelle C
(2016) Localized Misfolding Within Broca's Area as a Distinctive Feature of Autistic

Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the

Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86-
93.

Coalson TS, Van Essen DC, Glasser MF (2018) The impact of traditional neuroimaging methods

Miller et al. | Tertiary sulcal morphology in human prefrontal cortex

Miller JA, D’Esposito M, Weiner KS (2020a) Using tertiary sulci to map the “cognitive globe” of prefrontal cortex. psyArxiv.

Figure 1. A synopsis of ambiguity regarding sulcal definitions in the human posterior middle frontal gyrus over the last 130 years. Classic and modern schematics of the sulcal patterning in human lateral prefrontal cortex (LPFC). (a) Sulci in the middle frontal gyrus are labeled in yellow on classic and modern schematics of human LPFC. Historically, anatomists had previously either (1) not labeled the sulci within the location of the modern pmfs (first two images; arrow indicates depicted, but unlabeled sulcal components) (Eberstaller, 1890; Connolly, 1950) or 2) included these sulci in the definition of the posterior portion of the frontomarginal sulcus (third image; (Rajkowska and Goldman-Rakic, 1995)). The most recent schematic (fourth image, adapted from Petrides, 2019) proposes that the pmfs is separate from the intermediate frontal sulcus (imfs-h and imfs-v, synonymous with the frontomarginal sulcus) and consists of three distinct components: posterior (pmfs-p), intermediate (pmfs-i), and anterior (pmfs-a). (b) Three individually labeled left hemispheres with the pmfs outlined in white. The pmfs is prominent within individual participants (Extended Data Figure 2-1 for all participants). The superior and inferior frontal sulci (sfs, ifs) are labeled for reference above and below the middle frontal gyrus, respectively. (c) Average cortical surfaces show much smaller pmfs components compared to individual participants. As more participants are averaged together into templates, the pmfs disappears almost entirely, which is inconsistent with their prominence in individual hemispheres.

Figure 2. LPFC tertiary sulci are easily identifiable and characteristically shallow. (a) Left: an example inflated cortical surface of an individual left hemisphere in which the sulci examined in the present study are outlined and labeled (Extended Data Figure 2-1 for all participants). Sulci are dark gray, while gyri are light gray. Right: Two post-mortem hemispheres (Retzius, 1896) and three histological sections (note that the pmfs components are referred to as “intermediate frontal sulcus” in the Allen Human Brain Atlas: https://atlas.brain-map.org/; (Ding et al., 2016)) showing that the pmfs sulci are also identifiable in post-mortem tissue samples. (b) Top: Surface area for each sulcus (ordered posterior to anterior) is plotted for each individual participant (gray circles), as well as the mean (colored bars) and 95% confidence interval (black line). Acronyms used for each LPFC sulcus are also included. Darker shades indicate right hemisphere values, while lighter shades indicate left hemisphere values. The three pmfs sulci have the smallest surface area of all LPFC sulci measured in the present study. Bottom: Same layout as above, but for sulcal depth (mm). The three pmfs sulci are the shallowest of the LPFC sulci measured here.

Table 1.

Most common intersections of the pmfs components (morphological types).

Table 2.

Surface area and depth of the three pmfs components.

Figure 3. The pmfs sulci are anatomically differentiable based on myelin content. (a) Top: Schematic of the calculation of geodesic distance along the cortical surface. For each sulcus, the average distance of each vertex from the central sulcus was calculated (dotted black line; Materials and Methods). Bottom: an example T1w/T2w map in an individual participant in which 5-95% percentile of values are depicted. (b) T1w/T2w values (a proxy for myelin content) are plotted for each component of the pmfs for each individual participant (N = 36). Bars represent mean ± 95% CI, while each participant is depicted as a circle. Darker shades indicate right hemisphere values, while lighter shades indicate left hemisphere values. The components of the pmfs are differentiable based on myelin content, with a decrease from posterior to anterior across both hemispheres. (c) Scatterplot showing the negative relationship between distance from the central sulcus and the mean myelination value for all labeled sulci from each individual.
The mixed linear model (Materials and Methods) with predictors of distance and hemisphere shows a marginal r² of 60.8%. Scatterplot is bootstrapped at 68% CI for visualization. (d) Scatterplot showing the mean T₁w/T₂w value for each sulcus as a function of distance (mm) from the central sulcus. Error bars for both the x- and y-axes represent S.E.M. (68% CI) across individuals (N = 36 participants). Dark purple: right hemisphere; Light purple: left hemisphere.

Figure 4. The pmfs sulci and middle frontal gyrus have differentiable myelin profiles across cortical depths. (a) Left: Tissue contrast enhancement (T₁w/T₂w metric, a proxy for myelin) at nine cortical depths, sampled from the outer gray matter (pial) to the gray/white matter boundary (white matter) using equivalent surfaces (Materials and Methods). The MFG (excluding the pmfs) has higher myelin content than all pmfs components in the upper cortical layers, while the pmfs components have higher myelin content in deeper layers. Shaded area represents bootstrapped 68% CI across participants. Green asterisks show significant statistical differences between the MFG and all pmfs components (MFG > pmfs), while purple asterisks show the reverse (pmfs > MFG; all tests FWE-corrected at p < 0.05/9).

(b) Right: Myelinated fiber density (y-axis) profile across cortical depths (x-axis) in post-mortem histological sections of the MFG, adapted from Braitenberg (1962). B: stria of Baillarger. G: stria of Gennari. Similar to our measurements, myelination increases from outer to inner layers within the MFG. (b) Left: Individual left hemisphere with the manually defined pmfs components (white) and the surrounding MFG (green) as defined by FreeSurfer (Destrieux et al., 2010). We excluded the pmfs components from the MFG to test for anatomically distinct profiles. Middle: Example equivalent surfaces at five different cortical depths, from the pial to white matter surfaces, which were used to sample the T₁w/T₂w metric across depths. Right: Myelination stain of a post-mortem histological section of the MFG from Braitenberg (1962). Arrow: Location from which the myelinated fiber density profile in (a, right) was calculated.

Figure 5. The pmfs components are functionally differentiable based on connectivity fingerprints within individuals. (a) Schematic of how individual-level resting state connectivity profiles were generated in each participant. Resting-state network parcellations for each participant were obtained from a recent study (Kong et al., 2018) in an observer-independent fashion of sulcal definitions in LPFC. Example individual cortical topographies are shown in four individual participants, colored according to the group parcellation. The individual cortical topographies and pmfs sulcal definitions were used to calculate the connectivity fingerprint, which represents the overlap of each network within the pmfs component of each participant. (b) Polar plots showing the mean connectivity fingerprint of the three pmfs components (plotted outwards) with each of 17 resting-state functional connectivity networks, across participants. Resting-state networks with the highest overlap across participants are labeled. (c) Left: Polar plots showing variability among 6 individual participants. Right: Dissimilarity of the resting-state network fingerprints (variability in the connectivity fingerprint across participants represented by the Wasserstein distance between unique pairs of participants; Materials and Methods) are plotted as a function of each pmfs component for left and right hemispheres. Error bars represent 68% CI (SEM) across unique participant pairs.

Figure 6. The pmfs and imfs components are functionally differentiable based on cognitive components: A meta-analysis of fMRI experimental tasks. (a) Schematic of analyses linking sulcal probability maps (bottom, left) and cognitive component maps (right) from a meta-analysis of fMRI experimental tasks (Yeo et al., 2015) using an expectation maximization algorithm (Materials and Methods). For each pmfs component, the algorithm provides a posterior probability for each of 14 cognitive components being associated with the provided sulcal probability map. (b) For each pmfs and imfs component in each hemisphere, the posterior probability for each cognitive component is plotted. This approach further supports that the pmfs-p (Component 12, lh; Component 11, rh), pmfs-i (Component 10, lh and rh), and pmfs-a (Component 10, lh; Component 9, rh; Materials and Methods)
are functionally dissociable based on meta-analytic data of cognitive task activations. The \textit{imfs-h} and \textit{imfs-v} are also dissociable from the \textit{pmfs} components in the left hemisphere, and functionally similar to the \textit{pmfs-a} in the right hemisphere. Gray dots indicate individual participant data points when the analysis is performed with individual labels transformed to a template cortical surface, rather than with probability maps (Materials and Methods).

Figure 7. Comparing the overlap between retinotopic responses relative to the predicted location of the \textit{pmfs} sulcal components. Map of the mean (n = 181) R^2 metric (colorbar) from the HCP retinotopy dataset (Benson et al., 2018) on the \textit{fsaverage} template cortical surface for each hemisphere, thresholded at 15%. This metric measures how well the fMRI time-series at each vertex is modeled by population receptive field (pRF) modeling that was calculated and shared by Benson and colleagues (https://osf.io/bw9ec/wiki/home/). Predicted \textit{pmfs} location from the maximum probability maps is overlaid in orange (thresholded at 33% overlap across participants). There was only a modest overlap between predicted \textit{pmfs} location and retinotopic representations (a) in the right hemisphere (no overlap in the left hemisphere). Instead, and consistent with prior work (Mackey et al., 2017), the highest correspondence between retinotopic responses and sulcal patterning in LPFC occurs at two sulcal intersections: (i) the \textit{iprs} and \textit{sfs-p} (c), and (2) the \textit{iprs} and \textit{ifs} (b).

Figure 8. Quantification and prediction of \textit{pmfs-p}, \textit{pmfs-i}, and \textit{pmfs-a} within individual hemispheres. (a) Procedure to generate sulcal probability maps based on the manual anatomical labeling within each individual participant. Labels from each individual are transformed to a template cortical surface to form a probabilistic sulcal map and then projected onto the surface of a held-out individual participant. The overlap between the manual anatomical label on the held-out participant and predicted location was then calculated for each iteration across participants. (b) Overlap (DICE coefficient) between predicted and manual location of each \textit{pmfs} component within individual participants. Prediction for the \textit{pmfs} is highest when all three components are combined. The central sulcus (\textit{cs}) is included as a noise ceiling for reference, as this landmark is used in the surface registration algorithm that aligns cortical surfaces across participants.

Figure 9. Linking the past to the present: Myelination gradients, cortical areas, and the \textit{pmfs}. (a) Left: Photograph of a left hemisphere from Sanides (1962). Numbers indicate cortical areas differing in myeloarchitecture. Dotted white lines: Sulcal boundaries as defined by Sanides. Dotted colored lines: \textit{pmfs-p} (green), \textit{pmfs-i} (red), and \textit{pmfs-a} (blue) based on modern definitions used in the present study. Identifying \textit{pmfs} components in Sanides’ classic images shows that he identified myeloarchitectonic gradations within \textit{pmfs} components, which is consistent with the present measurements. Gradations occurred in superior-inferior, as well as anterior-posterior dimensions. In the inferior portion of the \textit{pmfs-p} (green), there is an anterior-posterior transition between areas 40 and 55. In the \textit{pmfs-i} (red), there are two transitions: (i) a superior-inferior transition between areas 44 and a transition zone to area 55, and (ii) an anterior-posterior transition between areas 44 and 45. In the \textit{pmfs-a}, there is a transition between areas 45 and 54. Right: Myelination stain of a histological section (coronal orientation) from Sanides (1962). Arrows indicate boundaries between labeled myeloarchitectonic areas (numbers). \textit{pmfs-a} is labeled to help the reader link the myelination stain to the image at left. The reader can appreciate the shallowness of the \textit{pmfs-a} relative to the sulcus (\textit{ifs}) between areas 54 and 58, which is also consistent with our measurements (Figure 2). (b) Left: Maximum probability maps (thresholded at 33% overlap across participants) for the \textit{pmfs-p}, \textit{pmfs-i}, and \textit{pmfs-a} are shown on the FreeSurfer average template (left hemisphere). The probability maps are shown relative to four areas from a multi-modal cortical parcellation based on structural and functional MRI data (Glasser et al., 2016). The \textit{pmfs-a} appears to denote the dorsal to ventral transition between areas 46 and p9/46v in anterior LPFC, while the \textit{pmfs-p} appears to denote the dorsal to ventral transition between areas 8Av and 8C in posterior LPFC. Right: \textit{pmfs} and \textit{imfs} maximum probability maps relative to a resting-state fMRI parcellation with proposed homologous parcels between monkey and human LPFC from Sallet et al., 2013. Here, the \textit{pmfs-i} and
pmfs-a denote the 9/46d and 9/46v boundary, while the imfs is situated within area 46. This relationship is also consistent with a recent cytoarchitectonic atlas showing that the pmfs-a identifies a transition between 9/46v and 9/46d (Petrides, 2019).

Extended Data Figure Legends

Extended Data Figure 2-1. Individual labeling of the pmfs in all participants. As in Figure 1, the three components of the posterior middle frontal sulcus (pmfs) are outlined in white on the individual inflated cortical surface of each participant. For reference, the large superior (sfs) and inferior (ifs) frontal sulci are also outlined, in blue, along with the horizontal (imfs-h) and vertical (imfs-v) intermediate frontal sulci, in green.

Extended Data Figure 5-1. Individual resting-state network connectivity profiles for the pmfs components. The individual connectivity profiles and pmfs sulcal definitions were used to calculate the connectivity fingerprint, which represents the overlap of each network within the pmfs component of each participant. Polar plots showing the connectivity fingerprint of the three pmfs components (plotted outwards) with each of 17 resting-state functional connectivity networks (Kong et al., 2018) for each individual participant (numbered) for the left hemisphere.
a historical ambiguity regarding the middle frontal sulci (pmfs)

1890 Eberstaller
1950 Connolly
1995 Rajkowska & Goldman-Rakic
2019 Petrides

b identification of the middle frontal sulci (pmfs) within individuals

individual surfaces

S1
S2
S3

pmfs components are often absent from average cortical surfaces

average surfaces

n=20
n=100
n=650
<table>
<thead>
<tr>
<th>most common intersections</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmfs-p</td>
<td>independent</td>
<td>pmfs-i</td>
<td>iprs</td>
</tr>
<tr>
<td>lh</td>
<td>44.4%</td>
<td>22.2%</td>
<td>16.7%</td>
</tr>
<tr>
<td>rh</td>
<td>30.6%</td>
<td>30.6%</td>
<td>16.7%</td>
</tr>
<tr>
<td>pmfs-i</td>
<td>independent</td>
<td>pmfs-p</td>
<td>pmfs-a</td>
</tr>
<tr>
<td>lh</td>
<td>47.2%</td>
<td>22.2%</td>
<td>16.7%</td>
</tr>
<tr>
<td>pmfs-a</td>
<td>independent</td>
<td>pmfs-p</td>
<td>pmfs-p</td>
</tr>
<tr>
<td>rh</td>
<td>58.3%</td>
<td>27.8%</td>
<td>19.4%</td>
</tr>
<tr>
<td>pmfs-a</td>
<td>independent</td>
<td>imfs-h</td>
<td>pmfs-i</td>
</tr>
<tr>
<td>lh</td>
<td>47.2%</td>
<td>38.9%</td>
<td>16.7%</td>
</tr>
<tr>
<td>imfs-h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rh</td>
<td>52.8%</td>
<td>50.0%</td>
<td>13.9%</td>
</tr>
<tr>
<td>pmfs-a</td>
<td>surface area (mm²)</td>
<td>depth (mm)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>lh</td>
<td>341.9 ± 154.8</td>
<td>11.1 ± 4.4</td>
<td></td>
</tr>
<tr>
<td>rh</td>
<td>315.4 ± 149.7</td>
<td>13.4 ± 3.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pmfs-i</th>
<th>surface area (mm²)</th>
<th>depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lh</td>
<td>339.3 ± 191.7</td>
<td>10.9 ± 4.2</td>
</tr>
<tr>
<td>rh</td>
<td>337.8 ± 124.2</td>
<td>12.8 ± 3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pmfs-p</th>
<th>surface area (mm²)</th>
<th>depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lh</td>
<td>353.6 ± 164.1</td>
<td>11.2 ± 3.8</td>
</tr>
<tr>
<td>rh</td>
<td>301.7 ± 133.2</td>
<td>12.1 ± 3.9</td>
</tr>
</tbody>
</table>
a) group network parcellation

- Individual cortical topographies
- Calculate overlap between connectivity network profile and pmfs component in each individual

b) pmfs connectivity fingerprints (mean across participants)

- Resting-state network
- DICE coeff.
- Variability across participants

- participant 1
- participant 2
- participant 3
- participant 4
- participant 5
- participant 6

- left
- right
a generating meta-analytic sulcal-functional mappings

- Bayesian expectation maximization: posterior probability of components for each sulcal map
- % participants per vertex
- Sulcal maximum probability maps

b

- pmfs-p
- pmfs-i
- pmfs-a
- imfs-h
- imfs-v

P (cognitive component | sulcal map)

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14
a) quantifying sulcal location with probability maps

- n - 1 participants with individual labels
- calculate overlap between individual labels and predicted locations (MPMs)
- surface registration to template (fsaverage)
- surface registration to held-out participant n
- maximum probability maps (MPMs)
- 33% participant overlap

b) leave-one-out MPM predictions

- predictability (DICE coeff.)
- pmfs:
 - cs
 - iprs
 - sprs
 - ifs
 - post.
 - int.
 - ant.
 - sfs-p
 - sfs-a
 - imfs-h
 - imfs-v

- hemisphere
 - left
 - right