Top-Down Control of Alpha Phase as a Mechanism of Temporal Prediction

Phoebe Bauer¹, Jason Samaha², Sawyer Cimaroli², Bradley R. Postle²,³

¹Department of Psychology, Reed College, ²Department of Psychology, ³Department of Psychiatry, University of Wisconsin-Madison

Background

- The phase of posterior pre-stimulus alpha-band oscillations (8-14 Hz) has been shown to influence visual detection (1, 2), the perception of TMS-induced phosphenes (3), and the magnitude of the fMRI response in visual cortex (4).
- Many accounts treat this phenomenon as a product of spontaneous ongoing activity, independent of top-down control.
- We manipulated temporal prediction as an independent variable, to investigate whether alpha-band phase can be optimally configured by top-down control.

Methods

- Participants (n = 15) were asked to make a non-speeded two-alternative forced-choice orientation judgment of a backwards-masked Gabor followed by a visibility rating on the 4-point perceptual awareness scale while 256 ch. EEG was recorded.
- Colored cues indicated short, long, or unpredictable delays with 100% validity.
- 20% of trials were catch trials on which no target was presented.

Behavioral Results

Temporal Predictions Improve Visual Perception

Predictions improved perception following short, but not long delays.

Subjective and objective measures of perception revealed the same pattern of effects.

Conclusions

- Predicting when a target will appear in a visually demanding discrimination task can improve perception.
- Temporal predictions are accompanied by a shift in the dominant alpha frequency prior to target onset, the direction of which is dependent on PAF during unpredictable trials.
- The phase angle of alpha at target onset predicts successful orientation discrimination, revealing an optimal phase for visual processing, and temporal predictions bias the phase of alpha towards that optimal for each individual.
- The phase of alpha oscillations has an active role in information processing, serving as a mechanism for the implementation of the top-down control of visual processing based on temporal predictions.

References


Funding from NIH grant R01MH095984, UW Madison Psychology Research Experience Program REU grant: NSF Award No. SMA-1358340, and Reed College Undergraduate Research Opportunity Grant.

Contact: jsamaha@wisc.edu